[go: up one dir, main page]

login
A202808
Number of n X 4 nonnegative integer arrays with each row and column increasing from zero by 0, 1 or 2.
2
1, 10, 121, 1177, 8232, 43483, 185051, 666610, 2105474, 5980085, 15560519, 37618385, 85418437, 183739050, 377000959, 742024924, 1407514167, 2583094972, 4601680965, 7980089529, 13504273038, 22347278077, 36230162235, 57638635054
OFFSET
1,2
COMMENTS
Column 4 of A202812.
LINKS
FORMULA
Empirical: a(n) = (59/119750400)*n^12 + (59/3991680)*n^11 + (157/777600)*n^10 + (1033/725760)*n^9 + (18839/3628800)*n^8 + (289/60480)*n^7 - (11717/1360800)*n^6 + (38509/725760)*n^5 + (129613/388800)*n^4 + (1511/181440)*n^3 - (274553/831600)*n^2 + (12923/13860)*n.
Conjectures from Colin Barker, Mar 03 2018: (Start)
G.f.: x*(1 - 3*x + 69*x^2 + 98*x^3 + 224*x^4 - 470*x^5 + 607*x^6 - 459*x^7 + 228*x^8 - 71*x^9 + 13*x^10 - x^11) / (1 - x)^13.
a(n) = 13*a(n-1) - 78*a(n-2) + 286*a(n-3) - 715*a(n-4) + 1287*a(n-5) - 1716*a(n-6) + 1716*a(n-7) - 1287*a(n-8) + 715*a(n-9) - 286*a(n-10) + 78*a(n-11) - 13*a(n-12) + a(n-13) for n>13.
(End)
EXAMPLE
Some solutions for n=5:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 2 0 0 2 2 0 0 0 2 0 0 1 2 0 0 0 1
0 2 2 4 0 0 2 3 0 1 1 3 0 0 1 2 0 1 1 3
0 2 3 4 0 1 3 5 0 1 2 3 0 1 1 3 0 1 3 3
0 2 3 4 0 2 4 5 0 2 2 4 0 2 3 4 0 1 3 3
CROSSREFS
Cf. A202812.
Sequence in context: A111695 A027770 A330847 * A091692 A098309 A056116
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 24 2011
STATUS
approved