[go: up one dir, main page]

login
Decimal expansion of the number x satisfying x^2+3x+5=e^x.
2

%I #5 Mar 30 2012 18:58:03

%S 3,2,2,0,0,1,7,9,5,0,5,2,5,7,1,0,2,9,5,7,7,7,0,9,2,0,9,2,5,0,5,1,3,0,

%T 1,7,8,3,9,2,9,8,3,1,6,0,4,3,3,1,1,5,5,0,8,4,6,2,9,1,1,4,0,0,9,8,2,4,

%U 9,0,5,6,5,5,3,2,3,7,6,0,7,0,3,7,7,3,6,5,3,1,3,0,2,0,7,8,8,9,8

%N Decimal expansion of the number x satisfying x^2+3x+5=e^x.

%C See A201741 for a guide to related sequences. The Mathematica program includes a graph.

%e x=3.220017950525710295777092092505130178392983...

%t a = 1; b = 3; c = 5;

%t f[x_] := a*x^2 + b*x + c; g[x_] := E^x

%t Plot[{f[x], g[x]}, {x, -3, 3.3}, {AxesOrigin -> {0, 0}}]

%t r = x /. FindRoot[f[x] == g[x], {x, 3.2, 3.3}, WorkingPrecision -> 110]

%t RealDigits[r] (* A201902 *)

%Y Cf. A201741.

%K nonn,cons

%O 1,1

%A _Clark Kimberling_, Dec 06 2011