[go: up one dir, main page]

login
A200841
Number of 0..n arrays x(0..5) of 6 elements without any two consecutive increases or two consecutive decreases.
1
64, 529, 2356, 7587, 19930, 45465, 93472, 177381, 315844, 533929, 864436, 1349335, 2041326, 3005521, 4321248, 6083977, 8407368, 11425441, 15294868, 20197387, 26342338, 33969321, 43350976, 54795885, 68651596, 85307769, 105199444
OFFSET
1,1
COMMENTS
Row 4 of A200838.
LINKS
FORMULA
Empirical: a(n) = (61/360)*n^6 + (93/40)*n^5 + (779/72)*n^4 + (521/24)*n^3 + (1801/90)*n^2 + (239/30)*n + 1.
Conjectures from Colin Barker, Oct 14 2017: (Start)
G.f.: x*(64 + 81*x - 3*x^2 - 36*x^3 + 22*x^4 - 7*x^5 + x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
EXAMPLE
Some solutions for n=3
..3....0....3....3....1....2....1....1....3....3....3....1....2....0....3....1
..3....3....3....3....0....3....3....1....1....0....0....0....3....3....3....1
..3....0....1....3....3....3....2....0....2....0....3....1....0....2....0....1
..3....2....1....1....0....0....3....0....1....3....2....1....0....3....0....3
..0....0....1....1....0....0....3....0....1....3....3....0....3....1....0....3
..3....3....0....3....3....3....0....0....0....2....1....0....1....1....0....2
CROSSREFS
Sequence in context: A066430 A115740 A100415 * A247929 A070054 A265636
KEYWORD
nonn
AUTHOR
R. H. Hardin Nov 23 2011
STATUS
approved