[go: up one dir, main page]

login
A199745
Numbers such that the sum of the largest and the smallest prime divisor equals the sum of the other distinct prime divisors.
4
2145, 2730, 4641, 4845, 5005, 5460, 5610, 6435, 7410, 8190, 8778, 9177, 10725, 10920, 11220, 11305, 11730, 13485, 13585, 13650, 13923, 14535, 14820, 16380, 16830, 17017, 17556, 19110, 19305, 20010, 20930, 21489, 21505, 21840, 22230, 22440, 23460, 23529, 23595
OFFSET
1,1
COMMENTS
The definition implies that members of the sequence have at least four distinct prime factors. An even term must have at least five distinct prime factors.
LINKS
FORMULA
n such that A008472(n)/2 = A074320(n) = A020639(n) + A006530 (n). - Ray Chandler, Nov 10 2011
Sum_{k=2..A001221(a(n))} A027748(a(n),k) = A027748(a(n),1) + A027748(a(n), A001221(a(n))). - Reinhard Zumkeller, Nov 10 2011
EXAMPLE
22440 is in the sequence because the distinct prime divisors are {2, 3, 5, 11, 17} and 17+2 = 3+5+11.
MAPLE
isA199745 := proc(n)
local p;
p := sort(convert(numtheory[factorset](n), list)) ;
if nops(p) >= 3 then
return ( op(1, p) + op(-1, p) = add(op(i, p), i=2..nops(p)-1) ) ;
else
false;
end if;
end proc:
for n from 2 to 20000 do
if isA199745(n) then
printf("%d, ", n) ;
end if ;
end do: # R. J. Mathar, Nov 10 2011
MATHEMATICA
Select[Range[25000], Plus@@(pl=First/@FactorInteger[#])/2==pl[[1]]+pl[[-1]]&] (* Ray Chandler, Nov 10 2011 *)
PROG
(Sage)
def isA199745(n) :
p = factor(n)
return len(p) > 2 and p[0][0] + p[-1][0] == add(p[i][0] for i in (1..len(p)-2))
[n for n in (2..20000) if isA199745(n)] # Peter Luschny, Nov 10 2011
(Haskell)
a199745 n = a199745_list !! (n-1)
a199745_list = filter (\x -> 2 * (a074320 x) == a008472 x) [1..]
-- Reinhard Zumkeller, Nov 10 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Nov 09 2011
STATUS
approved