%I #13 Jun 28 2017 02:10:32
%S 1,1,1,2,4,2,5,34,34,5,15,500,2051,500,15,52,10867,269940,269940,
%T 10867,52,203,313132,54381563,319608038,54381563,313132,203,877,
%U 10856948,13088156547,481871809749,481871809749,13088156547,10856948,877,4139
%N T(n,k) = number of n X k 0..7 arrays with values 0..7 introduced in row major order and no element equal to any horizontal or vertical neighbor.
%C Number of colorings of the grid graph P_n X P_k using a maximum of 8 colors up to permutation of the colors. - _Andrew Howroyd_, Jun 26 2017
%H Andrew Howroyd, <a href="/A198914/b198914.txt">Table of n, a(n) for n = 1..276</a> (terms 1..71 from R. H. Hardin)
%e Table starts
%e .....1............1..................2......................5
%e .....1............4.................34....................500
%e .....2...........34...............2051.................269940
%e .....5..........500.............269940..............319608038
%e ....15........10867...........54381563...........481871809749
%e ....52.......313132........13088156547........769126451071174
%e ...203.....10856948......3352514013159....1243368053336112649
%e ...877....418689772....876632051686733.2015791720035206825303
%e ..4139..17067989413.230783525290600476
%e .21110.715189507700
%e ...
%e Some solutions with values 0 to 7 for n=5, k=3:
%e ..0..1..0....0..1..0....0..1..0....0..1..0....0..1..0....0..1..0....0..1..0
%e ..1..2..1....1..0..1....1..2..1....1..0..2....1..0..2....1..2..3....1..2..3
%e ..3..0..2....2..3..4....3..4..2....3..4..5....3..4..5....0..1..4....0..4..5
%e ..2..4..5....5..4..3....5..6..1....5..3..6....6..7..0....5..6..7....1..5..1
%e ..1..6..7....6..0..7....6..7..2....7..4..2....3..0..3....7..0..5....6..7..4
%Y Columns 1-7 are A099262(n-1), A198908, A198909, A198910, A198911, A198912, A198913.
%Y Main diagonal is A198907.
%Y Cf. A207997 (3 colorings), A198715 (4 colorings), A198906 (5 colorings), A198982 (6 colorings), A198723 (7 colorings), A222462 (labeled 8 colorings), A207868 (unlimited).
%K nonn,tabl
%O 1,4
%A _R. H. Hardin_, Oct 31 2011