%I #28 Jul 01 2024 20:15:29
%S 1,2,3,4,5,6,7,8,9,10,12,13,14,15,16,18,20,21,24,26,27,28,30,35,36,39,
%T 40,42,45,48,52,54,56,60,63,65,70,72,78,80,84,90,91,104,105,108,112,
%U 117,120,126,130,135,140,144,156,168,180,182,189,195,208,210,216,234,240,252,260,270,273,280,312,315,336,351,360,364,378,390,420,432,455
%N Divisors of 196560.
%C 196560 is the kissing number of the Leech lattice (cf. A008408). It is a famous number in the "Moonshine" investigations.
%H N. J. A. Sloane, <a href="/A198343/b198343.txt">Table of n, a(n) for n = 1..160</a>
%H Eiichi Bannai and N. J. A. Sloane, <a href="http://dx.doi.org/10.4153/CJM-1981-038-7">Uniqueness of certain spherical codes</a>, Canad. J. Math. 33 (1981), no. 2, 437-449.
%H J. H. Conway and S. P. Norton, <a href="https://doi.org/10.1112/blms/11.3.308">Monstrous Moonshine</a>, Bull. Lond. Math. Soc. 11 (1979), no. 3, 308-339.
%H A. M. Odlyzko and N. J. A. Sloane, <a href="https://doi.org/10.1016/0097-3165(79)90074-8">New bounds on the number of unit spheres that can touch a unit sphere in n dimensions</a>, J. Combin. Theory Ser. A 26 (1979), no. 2, 210-214.
%H J. G. Thompson, <a href="https://doi.org/10.1112/blms/11.3.352">Some numerology between the Fischer-Griess Monster and the elliptic modular function</a>, Bull. London Math. Soc., 11 (1979), no. 3, 352-353.
%H <a href="/index/Di#divisors">Index entries for sequences related to divisors of numbers</a>
%t Divisors[196560] (* _Paolo Xausa_, Jul 01 2024 *)
%o (PARI) divisors(196560) \\ _Charles R Greathouse IV_, Feb 21 2013
%Y Cf. A008408.
%K nonn,fini,full
%O 1,2
%A _N. J. A. Sloane_, Oct 23 2011, following a suggestion from Mark A. Thomas.