OFFSET
1,3
COMMENTS
The row length sequence of this array is A005408(n-1), n >= 1: 1,3,5,7,...
This is the array for the numerator polynomials of the o.g.f. of alternating power sums of the first 2*n positive integers.
The corresponding array for the first 2*n+1 positive integers is found in A196848.
The obvious e.g.f. of a(k,2*n) := Sum_{j=1..2*n} (-1)^j * j^k is ge(n,x) := Sum_{k>=0} a(k,2*n)*(x^k)/k! = Sum_{j=1..2*n} (-1)^j * exp(j*x) = exp(x)*(exp(2*n*x) - 1)/(exp(x) + 1).
Via Laplace transformation (see the link under A196837, addendum) one finds the corresponding o.g.f.: Ge(n,x) = n*x*Pe(n,x)/Product_{j=1..2*n} (1 - j*x) with the numerator polynomial Pe(n,x) = Sum_{m=0..2*(n-1)} a(n,m)*x^m.
FORMULA
a(n,m) = [x^m](Ge(n,x)*Product_{j=1..2*n} (1 - j*x/(n*x))), with the o.g.f. Ge(n,x) of the sequence a(k,2*n) := Sum_{j=1..2*n} (-1)^j * j^k. See a comment above.
a(n,m) = (1/n)*(-1)^m*Sum_{i=1..n} S_{2*i-1,2*i}(2*(n-1),m), n >= 1, with the (i,j)-family of number triangles S_{i,j}(n,k) defined in a comment to A196845.
EXAMPLE
n\m 0 1 2 3 4 5 6 7 8
1: 1
2: 1 -5 7
3: 1 -14 73 -168 148
4: 1 -27 298 -1719 5473 -9162 6396
5: 1 -44 830 -8756 56453 -227744 562060 -778800 468576
...
The o.g.f. for the sequence a(k,4) := -(1^k - 2^k + 3^k -4^k) = 2*A053154(k), k>=0, (n=2) is Ge(2,x) = 2*x*(1-5*x+7*x^2)/Product_{j=1..4} (1 - j*x).
CROSSREFS
KEYWORD
sign,easy,tabf
AUTHOR
Wolfdieter Lang, Oct 27 2011
STATUS
approved