[go: up one dir, main page]

login
A195522
T(n,k) = Number of lower triangles of an n X n -k..k array with all row and column sums zero.
12
1, 1, 1, 1, 1, 3, 1, 1, 5, 15, 1, 1, 7, 65, 199, 1, 1, 9, 175, 3753, 6247, 1, 1, 11, 369, 27267, 860017, 505623, 1, 1, 13, 671, 121367, 23663523, 839301197, 105997283, 1, 1, 15, 1105, 401565, 286168923, 122092290831, 3535646416019, 58923059879, 1, 1, 17
OFFSET
1,6
COMMENTS
Table starts
....1......1........1.........1..........1...........1...........1.......1....1
....1......1........1.........1..........1...........1...........1.......1....1
....3......5........7.........9.........11..........13..........15......17...19
...15.....65......175.......369........671........1105........1695....2465.3439
..199...3753....27267....121367.....401565.....1089411.....2563933.5423365
.6247.860017.23663523.286168923.2106810049.11131321791.46387885537
LINKS
FORMULA
Empirical for rows:
T(2,k) = 1
T(3,k) = 2*k + 1
T(4,k) = 4*k^3 + 6*k^2 + 4*k + 1
T(5,k) = (643/45)*k^6 + (643/15)*k^5 + (2165/36)*k^4 + (293/6)*k^3 + (4423/180)*k^2 + (73/10)*k + 1
T(6,k) = (7389349/90720)*k^10 + (7389349/18144)*k^9 + (836251/864)*k^8 + (4318165/3024)*k^7 + (6254923/4320)*k^6 + (4563293/4320)*k^5 + (10247161/18144)*k^4 + (249983/1134)*k^3 + (21959/360)*k^2 + (3469/315)*k + 1
EXAMPLE
Some solutions for n=5 k=6
..0..........0..........0..........0..........0..........0..........0
..0.0.......-2.2........6-6.......-1.1........5-5.......-4.4.......-4.4
.-1.3-2.....-6.0.6.....-6.6.0.....-1.5-4.....-6.4.2......3-6.3.....-4.1.3
..6-3-2-1....4-4-4.4....5.3-5-3....0-5.3.2....0.4-3-1...-5.5.1-1....5-2-4.1
.-5.0.4.1.0..4.2-2-4.0.-5-3.5.3.0..2-1.1-2.0..1-3.1.1.0..6-3-4.1.0..3-3.1-1.0
CROSSREFS
Row 4 is A005917(n+1).
Sequence in context: A341470 A293796 A195892 * A273169 A273167 A364113
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Sep 20 2011
STATUS
approved