OFFSET
0,2
COMMENTS
Sequence found by reading the line from 0, in the direction 0, 17, ..., in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020. This is the one of the semi-axis of the square spiral, which is related to the primitive Pythagorean triple [3, 4, 5].
a(k) is a square for k=(3/56)*((449+120*sqrt(14))^n+(449-120*sqrt(14))^n-2). - Bruno Berselli, Oct 18 2011
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (3, -3, 1).
FORMULA
a(n) = 14*n^2 + 3*n.
G.f.: x*(17+11*x)/(1-x)^3. - Bruno Berselli, Oct 18 2011
MATHEMATICA
Table[n(14n+3), {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 17, 62}, 50] (* Harvey P. Dale, Jul 17 2023 *)
PROG
(Magma) [14*n^2 +3*n: n in [0..50]]; // Vincenzo Librandi, Oct 14 2011
(PARI) a(n)=n*(14*n+3) \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Oct 13 2011
EXTENSIONS
Name suggested by Bruno Berselli, Oct 13 2011
STATUS
approved