[go: up one dir, main page]

login
A194483
Number of ways to arrange 6 indistinguishable points on an n X n X n triangular grid so that no four points are in the same row or diagonal.
1
0, 0, 1, 165, 4135, 47010, 337860, 1790472, 7622340, 27489825, 87018360, 247874770, 647091588, 1569661600, 3576049620, 7716906900, 15881735580, 31347485274, 59618165895, 109678780695, 195827638105, 340301983890, 576974687080
OFFSET
1,4
COMMENTS
Column 6 of A194485.
LINKS
FORMULA
Empirical: a(n) = (1/46080)*n^12 + (1/7680)*n^11 - (1/3072)*n^10 - (137/23040)*n^9 + (871/46080)*n^8 + (3107/161280)*n^7 - (5573/46080)*n^6 + (1157/23040)*n^5 + (2627/11520)*n^4 - (1121/5760)*n^3 - (181/1440)*n^2 + (11/84)*n
EXAMPLE
Some solutions for 5 X 5 X 5:
......0..........1..........0..........0..........0..........0..........0
.....0.1........1.0........0.1........0.1........0.1........1.0........1.0
....0.1.0......0.1.1......0.0.1......1.0.1......0.1.0......0.1.0......0.1.1
...0.1.1.0....1.0.0.0....0.1.0.1....1.0.1.1....1.0.0.1....0.1.0.0....0.1.0.1
..0.0.1.1.0..0.0.1.0.0..1.0.0.1.0..0.0.0.0.0..1.0.0.0.1..0.0.1.1.1..1.0.0.0.0
CROSSREFS
Sequence in context: A184490 A027796 A145055 * A105944 A071576 A140912
KEYWORD
nonn
AUTHOR
R. H. Hardin, Aug 26 2011
STATUS
approved