[go: up one dir, main page]

login
A194185
Primes of the form k^16 + (k+1)^16.
14
65537, 4338014017, 2973697798081, 36054040477057, 314707907280257, 8746361693522261761, 4441930186581050471617, 1936348941361814438534657, 8260002645666200230661441, 157512780598351804823277697, 684655198104511486296198721, 21770695412796292350304592257
OFFSET
1,1
COMMENTS
Prime 16-dimensional centered cube numbers. This is to dimension 16 as A194155 is to dimension 8 and as A152913 is to dimension 4.
LINKS
EXAMPLE
a(1) = 1^16 + (1+1)^16 = 65537 = A100266(2).
a(2) = 3^16 + (3+1)^16 = 4338014017 = A100266(3).
a(3) = 5^16 + (5+1)^16 = 2973697798081 = A100266(4).
a(4) = 6^16 + (6+1)^16 = 36054040477057 = A100266(5).
a(5) = 7^16 + (7+1)^16 = 314707907280257 = A100266(6).
a(6) = 14^16 + (14+1)^16 = 8746361693522261761 = A100266(11).
a(7) = 21^16 + (21+1)^16 = 4441930186581050471617 = A100266(22).
MATHEMATICA
Select[Table[n^16+(n+1)^16, {n, 0, 800}], PrimeQ] (* Vincenzo Librandi, Dec 07 2011 *)
Select[Total/@Partition[Range[60]^16, 2, 1], PrimeQ] (* Harvey P. Dale, Dec 07 2017 *)
PROG
(Magma) [ a: n in [1..100] | IsPrime(a) where a is n^16+(n+1)^16 ]; // Vincenzo Librandi, Dec 07 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jonathan Vos Post, Aug 18 2011
STATUS
approved