[go: up one dir, main page]

login
A193761
0.25-Ramanujan primes R_{0.25,n}: a(n) is the smallest number such that for any x >= a(n), we have pi(x) - pi(0.25x) >= n, where pi(x) is the number of primes <= x.
3
2, 3, 5, 13, 17, 29, 31, 37, 41, 53, 59, 61, 71, 79, 83, 97, 101, 103, 107, 127, 131, 137, 149, 151, 157, 173, 179, 191, 193, 197, 199, 223, 227, 229, 239, 251, 257, 269, 271, 277, 293, 307, 311, 317, 337, 347, 349, 359, 367, 373, 379, 389, 397, 419, 431, 439
OFFSET
1,1
COMMENTS
Generalized Ramanujan primes with the parameter k have been introduced for the first time by Vladimir Shevelev in comment to A164952 from Sep 01 2009 (see also his comment to A104272 from the same date). Amersi et al. give the same definition with the parameter c=1/k in their cited paper. - Vladimir Shevelev, Aug 18 2011
See additional comments and links in A290394. - Jonathan Sondow, Aug 01 2017
LINKS
N. Amersi, O. Beckwith, S. J. Miller, R. Ronan, J. Sondow, Generalized Ramanujan primes, arXiv:1108.0475 [math.NT], 2011.
N. Amersi, O. Beckwith, S. J. Miller, R. Ronan, J. Sondow, Generalized Ramanujan primes, Combinatorial and Additive Number Theory, Springer Proc. in Math. & Stat., CANT 2011 and 2012, Vol. 101 (2014), 1-13
V. Shevelev, Ramanujan and Labos primes, their generalizations, and classifications of primes, J. Integer Seq. 15 (2012) Article 12.5.4
FORMULA
a(n) <= A104272(n).
CROSSREFS
Cf. A104272 (Ramanujan primes), A193880 (0.75-Ramanujan primes), A164952, A290394 (first (1 + 1/n)-Ramanujan prime).
Sequence in context: A262840 A215318 A186945 * A215355 A242752 A215813
KEYWORD
nonn
AUTHOR
Nadine Amersi, Olivia Beckwith (obeckwith(AT)gmail.com), Steven J. Miller (Steven.J.Miller(AT)williams.edu), Ryan Ronan (ronan2(AT)cooper.edu), Jonathan Sondow Aug 04 2011
STATUS
approved