[go: up one dir, main page]

login
Q-residue of the triangle A051162, where Q is the triangular array (t(i,j)) given by t(i,j)=1. (See Comments.)
2

%I #8 Feb 19 2015 14:49:29

%S 1,1,3,15,83,503,3403,25807,218451,2049687,21160667,238690847,

%T 2923054435,38641535143,548635554795,8328494925615,134634766604915,

%U 2309386642312631,41897258229334267,801610384425038911,16132033041827096451

%N Q-residue of the triangle A051162, where Q is the triangular array (t(i,j)) given by t(i,j)=1. (See Comments.)

%C For the definition of Q-residue, see A193649.

%F Conjecture: a(n) +(-n-4)*a(n-1) +(4*n-1)*a(n-2) +5*(-n+2)*a(n-3) +2*(n-3)*a(n-4)=0. - _R. J. Mathar_, Feb 19 2015

%t q[n_, k_] := n + k; (* A051162 *)

%t r[0] = 1; r[k_] := Sum[q[k - 1, i] r[k - 1 - i], {i, 0, k - 1}]

%t p[n_, k_] := n!/(k! (n - k)!);

%t v[n_] := Sum[p[n, k] r[n - k], {k, 0, n}]

%t Table[v[n], {n, 0, 20}] (* A193658 *)

%t TableForm[Table[q[i, k], {i, 0, 4}, {k, 0, i}]]

%t Table[r[k], {k, 0, 20}] (* A001340 *)

%t TableForm[Table[p[n, k], {n, 0, 4}, {k, 0, n}]]

%Y Cf. A051162, A193649.

%K nonn

%O 0,3

%A _Clark Kimberling_, Aug 02 2011