[go: up one dir, main page]

login
A193562
Number of divisors of n^4+1.
3
1, 2, 2, 4, 2, 4, 2, 4, 4, 8, 4, 4, 4, 4, 4, 8, 2, 4, 4, 8, 2, 4, 4, 4, 2, 8, 4, 8, 2, 4, 4, 8, 4, 8, 2, 4, 4, 8, 4, 4, 4, 8, 4, 16, 8, 8, 2, 8, 2, 8, 4, 8, 4, 8, 2, 8, 2, 4, 4, 16, 8, 4, 4, 8, 8, 4, 8, 8, 4, 8, 8, 4, 4, 4, 2, 8, 8, 16, 4, 16, 2, 4, 2, 16, 4
OFFSET
0,2
COMMENTS
This is to n^4+1 as A193432 is to n^2+1.
a(n) = 2 when n^4+1 is prime, iff n is in A037896.
LINKS
FORMULA
a(n) = A000005(A002523(n)) = d(n^4+1) (also called tau(n^4+1) or sigma_0(n^4+1)), the number of divisors of n^4+1.
EXAMPLE
a(3) = 4 because 3^4+1 = 82, whose 4 factors are {1, 2, 41, 82}.
MATHEMATICA
DivisorSigma[0, Range[0, 90]^4+1] (* Harvey P. Dale, May 05 2013 *)
PROG
(PARI) a(n) = numdiv(n^4+1); \\ Michel Marcus, Feb 09 2020
(Magma) [NumberOfDivisors(n^4+1):n in [0..90]]; // Marius A. Burtea, Feb 09 2020
CROSSREFS
Cf. A000005, A002523, A037896, A193432 (number of divisors of n^2+1).
Sequence in context: A365348 A372330 A303809 * A249868 A255311 A075526
KEYWORD
nonn,easy
AUTHOR
Jonathan Vos Post, Aug 09 2011
STATUS
approved