[go: up one dir, main page]

login
A193348
Number of odd divisors of tau(n).
2
1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 3
OFFSET
1,4
LINKS
FORMULA
a(n) = A001227(A000005(n)). - Reinhard Zumkeller, Jul 25 2011
From Amiram Eldar, Aug 12 2024: (Start)
a(n) = 1 if and only if n is in A036537.
a(n) = A010553(n) if and only if n is a square. (End)
EXAMPLE
a(36) = 3 because tau(36) = 9 and the 3 odd divisors are {1, 3, 9}.
MATHEMATICA
a[n_] := Block[{d = Divisors[DivisorSigma[0, n]]}, Count[OddQ[d], True]]; Table[a[n], {n, 80}]
PROG
(PARI) a(n)=sumdiv(sigma(n, 0), d, d%2);
(PARI) a(n)=n=numdiv(n); numdiv(n>>valuation(n, 2)) \\ Charles R Greathouse IV, Jul 30 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michel Lagneau, Jul 23 2011
STATUS
approved