[go: up one dir, main page]

login
A192492
Decimal expansion of imaginary part of 5th nontrivial zero of Riemann zeta function.
13
3, 2, 9, 3, 5, 0, 6, 1, 5, 8, 7, 7, 3, 9, 1, 8, 9, 6, 9, 0, 6, 6, 2, 3, 6, 8, 9, 6, 4, 0, 7, 4, 9, 0, 3, 4, 8, 8, 8, 1, 2, 7, 1, 5, 6, 0, 3, 5, 1, 7, 0, 3, 9, 0, 0, 9, 2, 8, 0, 0, 0, 3, 4, 4, 0, 7, 8, 4, 8, 1, 5, 6, 0, 8, 6, 3, 0, 5, 5, 1, 0, 0, 5, 9, 3, 8, 8, 4, 8, 4, 9, 6, 1, 3, 5, 3
OFFSET
2,1
COMMENTS
The real part of the 5th nontrivial zero is of course 1/2 (A020761; the Riemann hypothesis is here assumed to be true).
EXAMPLE
The zero is at 1/2 + i * 32.9350615877391896906623689640749...
MATHEMATICA
(* ZetaZero was introduced in Version 6.0 *) RealDigits[ZetaZero[5], 10, 100][[1]]
PROG
(PARI) solve(y=32, 33, real(zeta(1/2+y*I))) \\ Charles R Greathouse IV, Mar 10 2016
(PARI) lfunzeros(lzeta, [32, 33])[1] \\ Charles R Greathouse IV, Mar 10 2016
CROSSREFS
Cf. A002410: nearest integer to imaginary part of n-th zero of Riemann zeta function (main entry); also A013629 (floor) and A092783 (ceiling).
The imaginary parts of the first 4 zeros are 14.134725... (A058303), 21.0220396... (A065434), 25.01085758... (A065452), 30.424876... (A065453). Others are A305741 (k=6), A305742 (k=7), A305743 (k=8), A305744 (k=9), A306004 (k=10).
The real parts of the trivial zeros are given by A005843 multiplied by -1 (and ignoring the initial 0 of that sequence).
Sequence in context: A228936 A169862 A245884 * A351444 A104005 A224578
KEYWORD
nonn,cons
AUTHOR
Alonso del Arte, Jul 02 2011
EXTENSIONS
Example and cross-references edited by M. F. Hasler, Nov 23 2018
STATUS
approved