OFFSET
2,1
COMMENTS
The real part of the 5th nontrivial zero is of course 1/2 (A020761; the Riemann hypothesis is here assumed to be true).
LINKS
Andrew M. Odlyzko, The first 100 (non trivial) zeros of the Riemann Zeta function, to over 1000 decimal digits each, AT&T Labs - Research.
Andrew M. Odlyzko, Tables of zeros of the Riemann zeta function
EXAMPLE
The zero is at 1/2 + i * 32.9350615877391896906623689640749...
MATHEMATICA
(* ZetaZero was introduced in Version 6.0 *) RealDigits[ZetaZero[5], 10, 100][[1]]
PROG
(PARI) solve(y=32, 33, real(zeta(1/2+y*I))) \\ Charles R Greathouse IV, Mar 10 2016
(PARI) lfunzeros(lzeta, [32, 33])[1] \\ Charles R Greathouse IV, Mar 10 2016
CROSSREFS
Cf. A002410: nearest integer to imaginary part of n-th zero of Riemann zeta function (main entry); also A013629 (floor) and A092783 (ceiling).
The imaginary parts of the first 4 zeros are 14.134725... (A058303), 21.0220396... (A065434), 25.01085758... (A065452), 30.424876... (A065453). Others are A305741 (k=6), A305742 (k=7), A305743 (k=8), A305744 (k=9), A306004 (k=10).
The real parts of the trivial zeros are given by A005843 multiplied by -1 (and ignoring the initial 0 of that sequence).
KEYWORD
nonn,cons
AUTHOR
Alonso del Arte, Jul 02 2011
EXTENSIONS
Example and cross-references edited by M. F. Hasler, Nov 23 2018
STATUS
approved