%I #13 Oct 30 2017 03:41:03
%S 6,7,8,10,11,12,13,15,16,17,18,20,23,26,27,28,30,31,33,36,38,39,41,42,
%T 43,44,45,46,48,49,53,59,60,61,65,66,67,68,70,73,74,78,80,86,94,95,99,
%U 104,106,107,108,110,113,114,118,120,126,129,139,149,154,159
%N Ordered sums f+5*g, where f and g are positive Fibonacci numbers (A000045).
%H G. C. Greubel, <a href="/A191879/b191879.txt">Table of n, a(n) for n = 1..5000</a>
%t c = 1; d = 5; f[n_] := Fibonacci[n];
%t g[n_] := c*f[n]; h[n_] := d*f[n];
%t t[i_, j_] := h[i] + g[j];
%t u = Table[t[i, j], {i, 1, 20}, {j, 1, 20}];
%t v = Union[Flatten[u ]] (* A191879 *)
%t t1[i_, j_] := If[g[i] - h[j] > 0, g[i] - h[j], 0]
%t u1 = Table[t1[i, j], {i, 1, 20}, {j, 1, 20}];
%t v1 = Union[Flatten[u1 ]] (* A191880: c*f(i)-d*f(j) *)
%t g1[n_] := d*f[n]; h1[n_] := c*f[n];
%t t2[i_, j_] := If[g1[i] - h1[j] > 0, g1[i] - h1[j], 0]
%t u2 = Table[t2[i, j], {i, 1, 20}, {j, 1, 20}];
%t v2 = Union[Flatten[u2 ]] (* A191881: d*f(i)-c*f(j) *)
%t v3 = Union[v1, v2] (* A191882*)
%Y Cf. A191880, A191881, A191882.
%K nonn
%O 1,1
%A _Clark Kimberling_, Jun 18 2011