[go: up one dir, main page]

login
A191605
Number of n-step two-sided prudent self-avoiding walks.
4
1, 4, 10, 26, 66, 168, 426, 1078, 2722, 6862, 17274, 43432, 109086, 273734, 686334, 1719604, 4305666, 10774550, 26948142, 67367456, 168337622, 420472716, 1049866442, 2620488898, 6538734758, 16310909604, 40676600026, 101414764862, 252787228590, 629960214066
OFFSET
0,2
LINKS
Mireille Bousquet-Mélou, Families of prudent self-avoiding walks, DMTCS proc. AJ, 2008, 167-180.
Nathan Clisby, Enumerative Combinatorics of Lattice Polymers, Notices AMS, 68:4 (April 2021), 504-515. See P_2(x) on page 511, but beware, the denominator has a typo.
Enrica Duchi, On some classes of prudent walks, in: FPSAC'05, Taormina, Italy, 2005.
FORMULA
G.f.: (1/(1-2*t-2*t^2+2*t^3))*(1+t-t^3+t*(1-t)*sqrt((1-t^4)/(1-2*t-t^2))). [Clarified by N. J. A. Sloane, Mar 15 2021]
EXAMPLE
a(2) = 10: NN, NE, NW, SS, SE, WW, WN, EE, EN, ES.
MAPLE
a:= n-> coeff(series((1/(1-2*t-2*t^2+2*t^3)) *(1+t-t^3+t*(1-t) *sqrt((1-t^4) /(1-2*t-t^2))), t, n+3), t, n):
seq(a(n), n=0..30);
CROSSREFS
Sequence in context: A285186 A178037 A175658 * A277236 A218208 A207095
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Jun 08 2011
STATUS
approved