OFFSET
0,12
COMMENTS
Sum of entries in row n is A004148(n) (the RNA secondary structure numbers).
T(n,0)=A190165(n).
Sum_{k>=0} k*T(n,k) = A190166(n).
The trivariate g.f. H(t,s,z), where t (s) marks (1,0)-steps at even (odd) levels and z marks length, satisfies the equation
z^2*(1-tz+z^2)*H^2 - (1-tz+z^2)*(1-sz+z^2)*H + 1-sz+z^2 = 0.
FORMULA
G.f.: G = G(t,z) satisfies the equation z^2*(1-tz+z^2)*G^2 - (1-z+z^2)*(1-tz+z^2)*G + 1 - z + z^2 = 0.
EXAMPLE
T(5,2)=3 because we have h'h'uhd, h'uhdh', and uhdh'h', where u=(1,1), h=(1,0), d=(1,-1) (the even-level h-steps are marked).
Triangle starts:
1;
0, 1;
0, 0, 1;
1, 0, 0, 1;
1, 2, 0, 0, 1;
1, 3, 3, 0, 0, 1;
MAPLE
eq := z^2*(1-t*z+z^2)*G^2-(1-z+z^2)*(1-t*z+z^2)*G+1-z+z^2 = 0: g := RootOf(eq, G): Gser := simplify(series(g, z = 0, 15)): for n from 0 to 13 do P[n] := sort(expand(coeff(Gser, z, n))) end do: for n from 0 to 12 do seq(coeff(P[n], t, k), k = 0 .. n) end do; # yields sequence in triangular form
MATHEMATICA
m = 13; G[_] = 0;
Do[G[z_] = -((z^2 G[z]^2 (-t z + z^2 + 1) + z^2 - z + 1)/((z^2 - z + 1)(t z - z^2 - 1))) + O[z]^m, {m}];
CoefficientList[#, t]& /@ CoefficientList[G[z], z] // Flatten (* Jean-François Alcover, Nov 15 2019 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, May 06 2011
STATUS
approved