[go: up one dir, main page]

login
A189536
The smallest prime p such that tau(p-1) + tau(p+1) = prime(n), or 0 if no such prime exists; where tau(k) is the number of divisors of k.
0
0, 2, 3, 5, 17, 37, 101, 0, 401, 3137, 4357, 62501, 21317, 16901, 1008017, 15877, 1020101, 33857, 69697, 14401, 331777, 78401, 32401, 57601, 828101
OFFSET
1,2
COMMENTS
This is sequence A090482(n) for prime n.
MATHEMATICA
nn = 25; t = Table[-1, {nn}]; t[[1]] = 0; t[[8]] = 0; cnt = 2; p = 1; While[cnt < nn, p = NextPrime[p]; s = DivisorSigma[0, p - 1] + DivisorSigma[0, p + 1]; If[PrimeQ[s], i = PrimePi[s]; If[i <= nn && t[[i]] == -1, t[[i]] = p; cnt++]]]; t (* T. D. Noe, Apr 28 2011 *)
CROSSREFS
Cf. A000005, A000668, A002496, A090482, A175144 (tau(p-1)+tau(p+1)).
Sequence in context: A077498 A118958 A259596 * A163588 A270539 A053182
KEYWORD
nonn
AUTHOR
STATUS
approved