OFFSET
0,1
COMMENTS
(Start) Let A be the unit-primitive matrix (see [Jeffery])
A=A_(10,4)=
(0 0 0 0 1)
(0 0 0 2 0)
(0 0 2 0 1)
(0 2 0 2 0)
(2 0 2 0 1).
Then a(n)=Trace(A^n). (End)
Evidently one of a class of accelerator sequences for Catalan's constant based on traces of successive powers of a unit-primitive matrix A_(N,r) (0<r<floor(N/2)) and for which the closed-form expression for a(n) is derived from the eigenvalues of A_(N,r).
LINKS
L. E. Jeffery, Unit-primitive matrices.
Index entries for linear recurrences with constant coefficients, signature (3, 2, -4).
FORMULA
G.f.: 5*(1-2*x)/(1-3*x-2*x^2+4*x^3).
a(n)=3*a(n-1)+2*a(n-2)-4*a(n-3), n>3, a(0)=5, a(1)=5, a(2)=25, a(3)=65.
a(n)=Sum_{k=1..5} ((w_k)^4-3*(w_k)^2+1)^n, w_k=2*cos((2*k-1)*Pi/10).
a(n)=1+2*(1-Sqrt(5))^n+2*(1+Sqrt(5))^n.
a(n)=5*A052899(n).
MATHEMATICA
CoefficientList[Series[5(1-2x)/(1-3x-2x^2+4x^3), {x, 0, 30}], x] (* or *) LinearRecurrence[{3, 2, -4}, {5, 5, 25}, 30] (* Harvey P. Dale, Jun 02 2014 *)
PROG
(PARI) Vec(5*(1-2*x)/(1-3*x-2*x^2+4*x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 25 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
L. Edson Jeffery, Apr 20 2011
STATUS
approved