%I #28 Mar 17 2023 11:22:51
%S 1,1,2,4,8,15,30,59,115,225,441,863,1689,3307,6474,12673,24809,48567,
%T 95075,186120,364352,713261,1396290,2733399,5350944,10475089,20506194,
%U 40143239,78585017,153839228,301158021,589551538,1154115087,2259313307,4422866209
%N Expansion of g.f. 1/(1-(x+x^2+x^3+x^4+x^6+x^7)).
%C Compositions of n into parts !=5 and <=7. - _Joerg Arndt_, Jun 06 2011
%H Vincenzo Librandi, <a href="/A189101/b189101.txt">Table of n, a(n) for n = 0..300</a>
%H D. Applegate, M. LeBrun, and N. J. A. Sloane, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Sloane/carry2.html">Dismal Arithmetic</a>, J. Int. Seq. 14 (2011) # 11.9.8.
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,1,1,0,1,1).
%o (Maxima) makelist(coeff(taylor(1/(1-(x+x^2+x^3+x^4+x^6+x^7)), x, 0, n), x, n), n, 0, 34); /* _Bruno Berselli_, Jun 05 2011 */
%o (PARI) Vec(1/(1-(x+x^2+x^3+x^4+x^6+x^7))+O(x^99)) \\ _Charles R Greathouse IV_, Feb 26 2014
%Y This sequence is the next in the series after A000931, A006498, A079976, A079968.
%K nonn,easy
%O 0,3
%A _N. J. A. Sloane_, Apr 19 2011