[go: up one dir, main page]

login
A189055
Primes of the form (k+1)^11 - k^11.
6
313968931, 6612607849, 68618940391, 2257404775627, 26360313735014491, 130898631716248441, 11736367906285382977, 28945284114821573731, 229761141540921525811, 202978059247932180748537, 228398127589553102936371, 476213535986962784582617, 1627839264198988265272849, 3421374091098795513254497
OFFSET
1,1
COMMENTS
All prime numbers which are the difference of integers raised to the 11th power have this form. Values of n in A211184.
LINKS
PROG
(Python)
from itertools import count
primes = Primes()
def diff_pow(i, n):
return (i+1)**n - i**n
def diff_pow_primes(n, limit=range(1000)):
pows = [diff_pow(i, n) for i in limit]
return [p for p in pows if p in primes]
diff_pow_primes(11, count())
CROSSREFS
Sequence in context: A184671 A034610 A015410 * A221985 A219784 A105005
KEYWORD
nonn,easy
AUTHOR
David Cushing, Dec 19 2012
STATUS
approved