[go: up one dir, main page]

login
A188686
Binomial transform of the sequence of binomial(3n,n).
12
1, 4, 22, 139, 934, 6484, 45931, 329893, 2393470, 17499892, 128732992, 951674398, 7064138779, 52616241370, 393052285291, 2943582912904, 22093111508686, 166141033332448, 1251528633163264, 9442096410241438, 71333250226656784
OFFSET
0,2
COMMENTS
Binomial transform of A005809.
LINKS
FORMULA
G.f.: 2*cos((1/3)*arcsin(3/2*sqrt(3x/(1-x))))/sqrt(4-35x+31x^2).
D-finite recurrence: 2*n*(2*n-1)*a(n) = (39*n^2-43*n+12)*a(n-1) - 2*(n-1)*(33*n-34)*a(n-2) + 31*(n-2)*(n-1)*a(n-3). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 31^(n+1/2)/(6*4^n*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 20 2012
MATHEMATICA
Table[Sum[Binomial[n, k]Binomial[3k, k], {k, 0, n}], {n, 0, 22}]
PROG
(Maxima) makelist(sum(binomial(n, k)*binomial(3*k, k), k, 0, n), n, 0, 20);
CROSSREFS
Sequence in context: A142984 A283055 A097593 * A025756 A366119 A200731
KEYWORD
nonn,easy
AUTHOR
Emanuele Munarini, Apr 08 2011
STATUS
approved