OFFSET
0,4
FORMULA
T(n,k) = [x^n] ((1-sqrt(1-4*x))/(2*(x+sqrt(1-4*x))))^k/(x+sqrt(1-4*x)).
T(n,k) = [x^(n-k)] (1-2*x)/((1-x)^(n+1)*(1-x-x^2)^(k+1)).
T(n,k) = sum(binomial(i+k,k)*binomial(2*n-i,n+k+i)*(2*k+3*i+1)/(n+k+i+1), i=0..floor((n-k)/2)).
EXAMPLE
Triangle begins:
1
1, 1
3, 3, 1
9, 11, 5, 1
29, 40, 23, 7, 1
97, 147, 99, 39, 9, 1
333, 544, 413, 194, 59, 11, 1
1165, 2025, 1691, 907, 333, 83, 13, 1
4135, 7575, 6842, 4078, 1725, 524, 111, 15, 1
MATHEMATICA
Flatten[Table[Sum[Binomial[i+k, k]Binomial[2n-i, n+k+i](2k+3i+1)/(n+k+i+1), {i, 0, Floor[(n-k)/2]}], {n, 0, 10}, {k, 0, n}]]
PROG
(Maxima) create_list(sum(binomial(i+k, k)*binomial(2*n-i, n+k+i)*(2*k+3*i+1)/(n+k+i+1), i, 0, floor((n-k)/2)), n, 0, 10, k, 0, n);
CROSSREFS
KEYWORD
AUTHOR
Emanuele Munarini, Apr 02 2011
STATUS
approved