[go: up one dir, main page]

login
A188154
Number of 9-step self-avoiding walks on an n X n square summed over all starting positions.
1
0, 0, 40, 2640, 14520, 39792, 78168, 128688, 191068, 265280, 351324, 449200, 558908, 680448, 813820, 959024, 1116060, 1284928, 1465628, 1658160, 1862524, 2078720, 2306748, 2546608, 2798300, 3061824, 3337180, 3624368, 3923388, 4234240, 4556924
OFFSET
1,3
COMMENTS
Row 9 of A188147.
LINKS
FORMULA
Empirical: a(n) = 5916*n^2 - 38192*n + 55600 for n>7.
Conjectures from Colin Barker, Apr 27 2018: (Start)
G.f.: 4*x^3*(10 + 630*x + 1680*x^2 + 1028*x^3 - 72*x^4 - 240*x^5 - 71*x^6 - 7*x^7) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>10.
(End)
EXAMPLE
Some solutions for 3 X 3:
..3..4..5....1..2..3....3..4..5....9..2..1....3..4..5....9..4..3....7..6..5
..2..7..6....8..7..4....2..9..6....8..3..4....2..1..6....8..5..2....8..3..4
..1..8..9....9..6..5....1..8..7....7..6..5....9..8..7....7..6..1....9..2..1
CROSSREFS
Cf. A188147.
Sequence in context: A263553 A049215 A221658 * A268151 A269824 A178721
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 22 2011
STATUS
approved