[go: up one dir, main page]

login
A187662
Convolution of the (signless) central Lah numbers (A187535) and the central Stirling numbers of the second kind (A007820).
0
1, 3, 45, 1340, 62133, 3926607, 313159138, 30077004204, 3373855596485, 432604296358341, 62396125789568633, 9997677582465775336, 1761777732880595653932, 338625441643226149909356, 70500059235176885929427760
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} Lah(2*k,k)*S(2*n-2*k,n-k).
a(n) ~ 2^(4*n) * n^n / (exp(n) * sqrt(2*Pi*n)). - Vaclav Kotesovec, May 21 2014
MAPLE
L := n -> if n=0 then 1 else binomial(2*n-1, n-1)*(2*n)!/n! fi;
seq(sum(L(k)*combinat[stirling2](2*(n-k), n-k), k=0..n), n=0..12);
MATHEMATICA
L[n_] := If[n == 0, 1, Binomial[2n - 1, n - 1](2n)!/n!]
Table[Sum[L[k]StirlingS2[2n - 2k, n - k], {k, 0, n}], {n, 0, 14}]
PROG
(Maxima) L(n):= if n=0 then 1 else binomial(2*n-1, n-1)*(2*n)!/n!;
makelist(sum(L(k)*stirling2(2*n-2*k, n-k), k, 0, n), n, 0, 12);
CROSSREFS
Sequence in context: A009088 A245066 A352409 * A113065 A144949 A144950
KEYWORD
nonn,easy
AUTHOR
Emanuele Munarini, Mar 12 2011
STATUS
approved