[go: up one dir, main page]

login
A187361
Pell trisection: Pell(3*n+1), n >= 0.
2
1, 12, 169, 2378, 33461, 470832, 6625109, 93222358, 1311738121, 18457556052, 259717522849, 3654502875938, 51422757785981, 723573111879672, 10181446324101389, 143263821649299118, 2015874949414289041, 28365513113449345692, 399133058537705128729, 5616228332641321147898
OFFSET
0,2
COMMENTS
For the general computation of the o.g.f.s for the trisection of a sequence, given by its real o.g.f., see a Wolfdieter Lang comment under A187357.
FORMULA
a(n) = Pell(3*n+1), n >= 0, with Pell(n):=A000129(n).
O.g.f.: (1-2*x)/(1-14*x-x^2).
a(n) = 14*a(n-1) + a(n-2), a(0)= 1, a(1)=12.
a(n) = (((7-5*sqrt(2))^n*(-1+sqrt(2))+(1+sqrt(2))*(7+5*sqrt(2))^n))/(2*sqrt(2)). - Colin Barker, Jan 25 2016
MATHEMATICA
Table[Fibonacci[3n + 1, 2], {n, 0, 20}] (* Vladimir Reshetnikov, Sep 16 2016 *)
LinearRecurrence[{14, 1}, {1, 12}, 20] (* Harvey P. Dale, Jul 06 2023 *)
PROG
(PARI) Vec((1-2*x)/(1-14*x-x^2) + O(x^20)) \\ Colin Barker, Jan 25 2016
CROSSREFS
Cf. A142588 (Pell(3*n)), A187362 (Pell(3*n+2)).
Sequence in context: A012489 A027772 A099270 * A366235 A239335 A120662
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Mar 09 2011
STATUS
approved