[go: up one dir, main page]

login
A187234
Numbers such that Sum_{i<j, i,j =1..r} d(i)*d(j) is a prime number, where the d(i) are digits of n (n = concatenation of d(1), ..., d(r)).
1
12, 13, 15, 17, 21, 31, 51, 71, 102, 103, 105, 107, 111, 112, 113, 115, 116, 118, 119, 120, 121, 123, 125, 127, 129, 130, 131, 132, 134, 135, 137, 143, 145, 150, 151, 152, 153, 154, 156, 157, 158, 159, 161, 165, 170, 172, 173, 175, 178, 179, 181, 185, 187, 189, 191, 192, 195, 197, 198, 201, 210, 211, 213, 215, 217, 219, 231, 235, 237, 251, 253, 257
OFFSET
1,1
EXAMPLE
253 is in the sequence because d(1)*d(2) + d(1)*d(3) + d(2)*d(3) = 2*5+2*3+5*3 = 31 is prime.
MAPLE
with(numtheory):T:=array(1..10):k:=1:for n from 1 to 1000 do:l:=length(n):n0:=n:for
m from 1 to l do:q:=n0:u:=irem(q, 10):v:=iquo(q, 10):n0:=v :T[m]:=u:od: s:=0:
for i from 1 to l-1 do: for j from i+1 to l do: s:=s+T[i]*T[j]:od: od:if type(s, prime)
= true then printf(`%d, `, n):else fi:od:
CROSSREFS
Cf. A187559.
Sequence in context: A085520 A085556 A175225 * A127354 A226099 A179512
KEYWORD
nonn,base,easy
AUTHOR
Michel Lagneau, Mar 11 2011
STATUS
approved