OFFSET
1,1
COMMENTS
There exists an infinity of integers of the form (m^2 + m + 41) / 43 if we consider the numbers m of the form m = 1 + 43k => (m^2 + m + 41)/43 = k(43k+3)+1. It's highly probable that a(n) is infinite.
From Robert Israel, Jul 09 2017: (Start)
All terms == 1 or 41 (mod 43).
Bunyakovsky's conjecture implies there are infinitely many terms in both these classes. (End)
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
MAPLE
select(t -> isprime((t^2+t+41)/43), [seq(seq(43*j+k, k = [1, 41]), j=0..100)]); # Robert Israel, Jul 09 2017
MATHEMATICA
lst={}; Do[If[PrimeQ[(n^2+n+41)/43], AppendTo[lst, n]], {n, 2000}]; lst
Select[Range[1600], PrimeQ[(#^2+#+41)/43]&] (* Harvey P. Dale, Feb 12 2011 *)
PROG
(PARI) is(n)=isprime((n^2+n+41)/43) \\ Charles R Greathouse IV, Jun 13 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michel Lagneau, Feb 08 2011
STATUS
approved