[go: up one dir, main page]

login
A185202
G.f. A(x) satisfies: x = Sum_{n>=0} -(-A(x))^A000069(n), where A000069 is the odious numbers.
0
1, 1, 2, 6, 20, 70, 255, 961, 3717, 14663, 58758, 238524, 978844, 4054152, 16924986, 71145392, 300876074, 1279225578, 5464762332, 23444755016, 100968932096, 436355661280, 1891770895672, 8225329914410, 35858439130786, 156708088823482, 686392551655052
OFFSET
1,3
COMMENTS
The odious numbers (A000069) have an odd number of 1's in their binary expansion.
FORMULA
Equals the series reversion of the g.f. of the Thue-Morse sequence (A010060) evaluated at x = -x.
EXAMPLE
G.f.: A(x) = x + x^2 + 2*x^3 + 6*x^4 + 20*x^5 + 70*x^6 + 255*x^7 +...
Series reversion of the g.f. yields:
G(x) = x - x^2 - x^4 + x^7 - x^8 + x^11 + x^13 - x^14 - x^16 + x^19 + x^21 - x^22 + x^25 +..+ -(-x)^A000069(n) +...
PROG
(PARI) {odious(n)=if(n==0, 1, if(n%2==0, odious(n/2)+n, -odious((n-1)/2)+3*n))}
{a(n)=polcoeff(serreverse(sum(k=1, n+1, -(-x)^odious(k-1)+x^2*O(x^n))), n)}
CROSSREFS
Cf. A000069 (odious numbers), A010060 (Thue-Morse).
Sequence in context: A049128 A192540 A369630 * A340891 A049140 A372526
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 24 2012
STATUS
approved