[go: up one dir, main page]

login
Number of connected 2-regular simple graphs on n vertices with girth at least 6.
14

%I #31 Aug 02 2024 18:55:44

%S 1,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

%T 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

%U 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1

%N Number of connected 2-regular simple graphs on n vertices with girth at least 6.

%C Decimal expansion of 900001/9000000. - _Elmo R. Oliveira_, May 28 2024

%H Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/C_girth_ge_6">Connected regular graphs with girth at least 6</a>.

%H Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/C_k-reg_girth_ge_g_index">Index of sequences counting connected k-regular simple graphs with girth at least g</a>.

%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (1).

%F a(0)=1; for 0 < n < 6 a(n)=0; for n >= 6, a(n)=1.

%F This sequence is the inverse Euler transformation of A185326.

%F G.f.: (x^6-x+1)/(1-x). - _Elmo R. Oliveira_, May 28 2024

%e The null graph is vacuously 2-regular and, being acyclic, has infinite girth.

%e There are no 2-regular simple graphs with 1 or 2 vertices.

%e The n-cycle has girth n.

%t PadRight[{1, 0, 0, 0, 0, 0}, 100, 1] (* _Paolo Xausa_, Aug 02 2024 *)

%Y 2-regular simple graphs with girth at least 6: this sequence (connected), A185226 (disconnected), A185326 (not necessarily connected).

%Y Connected k-regular simple graphs with girth at least 6: A186726 (any k), A186716 (triangle); specified degree k: this sequence (k=2), A014374 (k=3), A058348 (k=4).

%Y Connected 2-regular simple graphs with girth at least g: A179184 (g=3), A185114 (g=4), A185115 (g=5), this sequence (g=6), A185117 (g=7), A185118 (g=8), A185119 (g=9).

%Y Connected 2-regular simple graphs with girth exactly g: A185013 (g=3), A185014 (g=4), A185015 (g=5), A185016 (g=6), A185017 (g=7), A185018 (g=8).

%K nonn,easy

%O 0

%A _Jason Kimberley_, Jan 28 2011