[go: up one dir, main page]

login
A184986
Quintic residues modulo 3331, sorted.
4
0, 1, 2, 4, 8, 16, 19, 21, 32, 35, 38, 42, 64, 70, 73, 76, 77, 83, 84, 91, 93, 97, 103, 107, 127, 128, 137, 139, 140, 146, 152, 154, 155, 159, 166, 168, 177, 179, 182, 183, 186, 193, 194, 197, 203, 206, 207, 213, 214, 227, 233, 243, 254, 256, 257, 263, 265, 271, 274
OFFSET
1,3
COMMENTS
That is, numbers x = k^5 (mod 3331) for some k. Only 667 numbers occur in this sequence. For the nonresidues, see A184987.
Lehmer states a theorem that says that 3331 is the largest prime for which there are not three consecutive nonzero residues. The other primes having this property are in sequence A188384. - T. D. Noe, Mar 29 2011
LINKS
Artur Jasinski, Table of n, a(n) for n = 1..667 (full sequence)
Lehmer D.H., Mechanized mathematics, Bull. Amer. Math. Soc., Vol. 72 (1966), No. 5, 739-759.
MATHEMATICA
Union[Table[Mod[n^5, 3331], {n, 3331}]]
Union[PowerMod[Range[3331], 5, 3331]] (* Harvey P. Dale, Aug 05 2016 *)
CROSSREFS
KEYWORD
nonn,fini,full
AUTHOR
Artur Jasinski, Mar 27 2011
STATUS
approved