[go: up one dir, main page]

login
Half the number of nX3 binary arrays with the number of 1-1 horizontal, vertical, diagonal and antidiagonal adjacencies equal to the number of 0-0 adjacencies
1

%I #6 Mar 31 2012 12:35:50

%S 1,6,1,180,116,8016,9746,398126,725872,20910204,50854089,1137666502,

%T 3437745554,63460798680,227195157189,3607654634376,14790377127600,

%U 208205724243960,952891467281892,12165590563428240,60941926764726246

%N Half the number of nX3 binary arrays with the number of 1-1 horizontal, vertical, diagonal and antidiagonal adjacencies equal to the number of 0-0 adjacencies

%C Column 3 of A183289

%H R. H. Hardin, <a href="/A183284/b183284.txt">Table of n, a(n) for n = 1..200</a>

%e Some solutions for 4X3 with a(1,1)=0

%e ..0..1..1....0..0..0....0..1..1....0..0..1....0..0..0....0..1..1....0..1..0

%e ..0..1..1....1..1..0....1..1..1....1..1..0....0..1..1....0..0..1....1..1..0

%e ..0..0..1....1..0..1....0..0..0....1..0..1....0..1..1....0..1..0....0..1..0

%e ..0..0..1....1..0..1....1..0..0....0..0..1....1..0..0....0..1..1....0..0..1

%K nonn

%O 1,2

%A _R. H. Hardin_ Jan 03 2011