OFFSET
0,5
COMMENTS
REFERENCES
M. Bona and A. Knopfmacher, On the probability that certain compositions have the same number of parts, Ann. Comb., 14 (2010), 291-306.
E. Munarini, N. Zagaglia Salvi, On the rank polynomial of the lattice of order ideals of fences and crowns, Discrete Mathematics 259 (2002), 163-177.
FORMULA
G.f. G(t,z) =1/[z^2-tz^2+sqrt((1+z+z^2)(1-3z+z^2))].
EXAMPLE
T(3,1)=2. Indeed, denoting by h (H) the (1,0)-step of weight 1 (2), and u=(1,1), d=(1,-1), the five paths of weight 3 are ud, du, hH, Hh, and hhh; two of them, namely hH and Hh, have exactly one H-step at level 0.
Triangle starts:
1;
1;
1,1;
3,2;
7,3,1;
15,8,3;
35,21,6,1;
MAPLE
G:=1/(z^2-t*z^2+sqrt((1+z+z^2)*(1-3*z+z^2))): Gser:=simplify(series(G, z=0, 18)): for n from 0 to 14 do P[n]:=sort(coeff(Gser, z, n)) od: for n from 0 to 14 do seq(coeff(P[n], t, k), k=0..floor(n/2)) od; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Dec 12 2010
STATUS
approved