[go: up one dir, main page]

login
A182455
a(0)=1, a(n) = (a(n-1) mod (n+2))*(n+2).
2
1, 3, 12, 10, 24, 21, 40, 36, 60, 55, 84, 78, 112, 105, 144, 136, 180, 171, 220, 210, 264, 253, 312, 300, 364, 351, 420, 406, 480, 465, 544, 528, 612, 595, 684, 666, 760, 741, 840, 820, 924, 903, 1012, 990, 1104, 1081, 1200, 1176, 1300, 1275, 1404
OFFSET
0,2
LINKS
FORMULA
a(0)=1, a(n) = (a(n-1) mod (n+2))*(n+2).
For k>0, a(2*k)=(k+1)*(2*k+4), a(2*k+1)=(k+1)*(2*k+3).
EXAMPLE
a(5) = (a(4) mod 7)*7 = (24 mod 7)*7 = 3*7 = 21.
PROG
(Python)
a=1
for n in range(1, 55):
. print a,
. a = (a%(n+2)) * (n+2)
(Haskell)
a182455 n = a182455_list !! n
a182455_list = 1 : zipWith (*) (zipWith mod a182455_list [3..]) [3..]
-- Reinhard Zumkeller, May 01 2012
CROSSREFS
Cf. A093005 - a(n)=(a(n-1) mod (n+1))*(n+1).
Sequence in context: A038230 A292581 A207852 * A110345 A018999 A279305
KEYWORD
nonn,easy
AUTHOR
Alex Ratushnyak, Apr 30 2012
STATUS
approved