[go: up one dir, main page]

login
A182237
Numbers occurring exactly in 2 rows of Pascal's triangle.
6
6, 10, 15, 20, 21, 28, 35, 36, 45, 55, 56, 66, 70, 78, 84, 91, 105, 126, 136, 153, 165, 171, 190, 220, 231, 252, 253, 276, 286, 300, 325, 330, 351, 364, 378, 406, 435, 455, 462, 465, 495, 496, 528, 560, 561, 595, 630, 666, 680, 703, 715, 741, 780, 792, 816
OFFSET
1,1
COMMENTS
A059233(a(n)) = 2.
LINKS
Reinhard Zumkeller and T. D. Noe, Table of n, a(n) for n = 1..1000 (first 100 terms from Reinhard Zumkeller)
MATHEMATICA
nn = 1000; t = Table[s = {}; k = 1; While[k++; b = Binomial[n, k]; k <= n/2 && b <= nn, AppendTo[s, b]]; s, {n, nn}]; t2 = Select[t, Length[#] > 0 &]; Transpose[Select[Tally[Sort[Flatten[t2]]], #[[2]] == 1 &]][[1]] (* T. D. Noe, Mar 13 2013 *)
PROG
(Haskell)
import Data.List (elemIndices)
a182237 n = a182237_list !! (n-1)
a182237_list = map (+ 2 ) $ elemIndices 2 a059233_list
CROSSREFS
Cf. A098565.
Sequence in context: A315249 A319382 A006987 * A337612 A315250 A315251
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Dec 24 2012
STATUS
approved