OFFSET
1,1
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..200
B. Chauvin, P. Flajolet, et al., And/Or Tree Revisited, Combinat., Probal. Comput. 13 (2004) 475-497
FORMULA
G.f.: (2-sqrt(2+16*x+2*sqrt(1-16*x)))/(8*x).
Recurrence: (n+1)*(2*n+1)*a(n) = 12*n*(3*n-1)*a(n-1) - 48*(n^2-5*n+5)*a(n-2) - 128*(n-2)*(2*n-5)*a(n-3). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 16^n/(sqrt(3*Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 20 2012
MAPLE
g := (2-sqrt(2+16*z+2*sqrt(1-16*z)))/8/z ; seq(coeftayl(%, z=0, n), n=1..20) ;
MATHEMATICA
Rest[CoefficientList[Series[(2-Sqrt[2+16*x+2*Sqrt[1-16*x]])/(8*x), {x, 0, 20}], x]] (* Vaclav Kotesovec, Oct 20 2012 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
R. J. Mathar, Apr 01 2012
STATUS
approved