[go: up one dir, main page]

login
A179624
Collatz trajectory starting at 230631.
1
230631, 691894, 345947, 1037842, 518921, 1556764, 778382, 389191, 1167574, 583787, 1751362, 875681, 2627044, 1313522, 656761, 1970284, 985142, 492571, 1477714, 738857, 2216572, 1108286, 554143, 1662430, 831215, 2493646, 1246823
OFFSET
1,1
COMMENTS
The total stopping time of 230631 is 442. - Michael De Vlieger, Oct 15 2018
LINKS
Eric Weisstein's World of Mathematics, Collatz Problem
MATHEMATICA
Off[Set::"setraw"]; f[n_]:=If[EvenQ[n], n=n/2, n=n*3+1]; Do[a=q; lst={a}; Do[a=f[a]; AppendTo[lst, a]; If[a==1, Break[]], {n, 10!}]; If[Length[lst]>400, Print[lst, Length[lst]]], {q, 5*8!, 9!}]
NestList[If[EvenQ[#], #/2, 3#+1]&, 230631, 30] (* Harvey P. Dale, Jun 26 2011 *)
CROSSREFS
Sequence in context: A324636 A015319 A270515 * A357826 A050998 A237462
KEYWORD
nonn,fini,full,easy
AUTHOR
STATUS
approved