[go: up one dir, main page]

login
A179550
Primes p such that p plus or minus the sum of its digits squared yields a prime in both cases.
2
13, 127, 457, 1429, 1553, 1621, 2273, 2341, 2837, 4129, 4231, 4561, 4813, 5119, 5519, 5531, 6121, 6451, 6547, 8161, 8167, 8219, 8237, 8783, 8819, 8831, 8941, 9511, 10267, 10559, 11299, 11383, 12809, 13183, 15091, 15569, 16573, 17569, 17659, 18133
OFFSET
1,1
LINKS
EXAMPLE
a(5)=1553 since 1553+(1^2+5^2+5^2+3^2)=1553+60=1613 is a prime AND 1553-(1^2+5^2+5^2+3^2)=1553-60=1493 is a prime again.
MAPLE
filter:= proc(p) local t, r;
if not isprime(p) then return false fi;
r:= add(t^2, t=convert(p, base, 10));
isprime(p+r) and isprime(p-r);
end proc:
select(filter, [seq(i, i=3..20000, 2)]); # Robert Israel, Mar 30 2021
MATHEMATICA
Select[Prime[Range[2100]], AllTrue[#+{Total[IntegerDigits[#]^2], -Total[ IntegerDigits[ #]^2]}, PrimeQ]&] (* Harvey P. Dale, Aug 07 2021 *)
PROG
(PARI) sumdd(n) = {digs = digits(n, 10); return (sum(i=1, #digs, digs[i]^2)); }
lista(nn) = {forprime(p=2, nn, s = sumdd(p); if (isprime(p+s) && isprime(p-s), print1(p, ", ")); ); } \\ Michel Marcus, Jul 25 2013
(Python)
from sympy import isprime, primerange
def sumdd(n): return sum(int(d)**2 for d in str(n))
def list(nn):
for p in primerange(2, nn+1):
s = sumdd(p)
if isprime(p-s) and isprime(p+s): print(p, end=", ")
list(18133) # Michael S. Branicky, Mar 30 2021 after Michel Marcus
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Carmine Suriano, Jul 19 2010
STATUS
approved