[go: up one dir, main page]

login
A179245
Numbers that have 5 terms in their Zeckendorf representation.
11
88, 122, 135, 140, 142, 143, 177, 190, 195, 197, 198, 211, 216, 218, 219, 224, 226, 227, 229, 230, 231, 266, 279, 284, 286, 287, 300, 305, 307, 308, 313, 315, 316, 318, 319, 320, 334, 339, 341, 342, 347, 349, 350, 352, 353, 354, 360, 362, 363, 365, 366, 367
OFFSET
1,1
COMMENTS
A007895(a(n)) = 5. - Reinhard Zumkeller, Mar 10 2013
Numbers that are the sum of five non-consecutive Fibonacci numbers. Their Zeckendorf representation thus consists of five 1's with at least one 0 between each pair of 1's; for example, 122 is represented as 1001010101. - Alonso del Arte, Nov 17 2013
LINKS
FORMULA
a(n) = A048680(A014313(n)). - Charles R Greathouse IV, Nov 17 2013
EXAMPLE
88 = 55 + 21 + 8 + 3 + 1.
122 = 89 + 21 + 8 + 3 + 1.
135 = 89 + 34 + 8 + 3 + 1.
140 = 89 + 34 + 13 + 3 + 1.
142 = 89 + 34 + 13 + 5 + 1.
81 is not in the sequence because, although it is the sum of five Fibonacci numbers (81 = 5 + 8 + 13 + 21 + 34), its Zeckendorf representation only has three terms: 81 = 55 + 21 + 5.
MAPLE
with(combinat): B := proc (n) local A, ct, m, j: A := proc (n) local i: for i while fibonacci(i) <= n do n-fibonacci(i) end do end proc: ct := 0: m := n: for j while 0 < A(m) do ct := ct+1: m := A(m) end do: ct+1 end proc: Q := {}: for i from fibonacci(11)-1 to 400 do if B(i) = 5 then Q := `union`(Q, {i}) else end if end do: Q;
MATHEMATICA
zeck = DigitCount[Select[Range[3000], BitAnd[#, 2*#] == 0 &], 2, 1];
Position[zeck, 5] // Flatten (* Jean-François Alcover, Jan 30 2018 *)
PROG
(Haskell)
a179245 n = a179245_list !! (n-1)
a179245_list = filter ((== 5) . a007895) [1..]
-- Reinhard Zumkeller, Mar 10 2013
(PARI) A048680(n)=my(k=1, s); while(n, if(n%2, s+=fibonacci(k++)); k++; n>>=1); s
[A048680(n)|n<-[1..100], hammingweight(n)==5] \\ Charles R Greathouse IV, Nov 17 2013
CROSSREFS
Cf. A035517, A007895. Numbers that have m terms in their Zeckendorf representations: A179242 (m = 2), A179243 (m = 3), A179244 (m = 4), A179246 (m = 6), A179247 (m = 7), A179248 (m = 8), A179249 (m = 9), A179250 (m = 10), A179251 (m = 11), A179252 (m = 12), A179253 (m = 13).
Sequence in context: A183186 A161194 A196581 * A174651 A225136 A039445
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Jul 05 2010
STATUS
approved