[go: up one dir, main page]

login
A179014
Even numbers that can only be expressed as the sum of two distinct twin prime pairs in two ways: n = p+(q+2) = (p+2)+q where (3,5) < (p,p+2) < (q,q+2).
0
18, 24, 30, 36, 42, 54, 60, 66, 84, 108, 126, 138, 174, 186, 216, 228, 264, 276, 306, 360, 414, 444, 456, 486, 546, 558, 606, 636, 666, 684, 726, 738, 756, 774, 804, 876, 936, 978, 996, 1014, 1044, 1086, 1176, 1206, 1236, 1326, 1386, 1416, 1536, 1566, 1596, 1608, 1644, 1656, 1746, 1788, 1854, 1866, 1998, 2064, 2076, 2166, 2586, 2676, 3054, 3216, 3336, 3426, 3504, 3846, 7116, 7836, 9276, 9846, 12744, 15126, 15816, 24096, 24534
OFFSET
1,1
EXAMPLE
Sum arrangements for some n: n = p + (q+2) = (p+2) + q, 5 + 13 = 7 + 11, 5 + 19 = 7 + 17, 11 + 31 = 13 + 29, 29 + 109 = 31 + 107, 5 + 271 = 7 + 269, 11 + 433 = 13 + 431, 107 + 619 = 109 + 617, 347 + 829 = 349 + 827, 107 + 1429 = 109 + 1427, 821 + 1033 = 823 + 1031, 347 + 2239 = 349 + 2237, 41 + 3463 = 43 + 3461, 347 + 7489 = 349 + 7487, 3461 + 9283 = 3463 + 9281, 4091 + 20443 = 4093 + 20441
CROSSREFS
Sequence in context: A376384 A076771 A375162 * A105093 A334015 A162331
KEYWORD
fini,full,nonn
AUTHOR
M. B. Jones, Jun 23 2010, Jun 26 2010, Jul 07 2010
STATUS
approved