[go: up one dir, main page]

login
A178466
Primes prime(k) such that the concatenation prime(k+1)//prime(k) is also prime.
0
3, 47, 53, 61, 131, 173, 199, 211, 233, 257, 353, 523, 587, 607, 619, 647, 653, 751, 797, 971, 991, 997, 1103, 1123, 1231, 1381, 1553, 1777, 1913, 1973, 1987, 2297, 2333, 2341, 2399, 2677, 2861, 3049, 3191, 3259, 3607, 3637, 3761, 3989
OFFSET
1,1
COMMENTS
53, 211, 653, 997, ... are also in A088712.
The role of the two primes is swapped in comparison to A030459.
The result of the concatenation is in A088784.
FORMULA
a(n) = A151799(A088712(n)).
EXAMPLE
The prime 53 is in the sequence because the next prime is 59 and 5953 is a prime.
MAPLE
read("transforms") ;
for n from 1 to 600 do p := ithprime(n) ; q := nextprime(p) ; r := digcat2(q, p) ; if isprime(r) then printf("%d, ", p) ; end if; end do: # R. J. Mathar, Jan 27 2011
MATHEMATICA
Transpose[Select[Partition[Prime[Range[600]], 2, 1], PrimeQ[FromDigits[ Flatten[ IntegerDigits/@Reverse[#]]]]&]][[1]] (* Harvey P. Dale, Feb 02 2011 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Carmine Suriano, Jan 27 2011
STATUS
approved