[go: up one dir, main page]

login
A177343
Number of times the n-th prime occurs in A039654.
4
1, 1, 1, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 4, 2, 4, 1, 1, 12, 1, 2, 3, 3, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 1, 3, 1, 1, 25, 1, 4, 2, 10, 1, 1, 1, 1, 3, 5, 1, 4, 10, 1, 7, 1, 8, 3, 2, 1, 1, 1, 4, 2, 5, 1, 1, 1, 1, 1, 1, 1, 18, 1, 1, 1, 10, 2, 1, 1, 1, 6, 1, 16, 4, 2, 2, 3, 1, 1, 1, 3, 11, 1, 2, 1, 18, 1, 2, 1, 1, 1, 3
OFFSET
1,5
COMMENTS
Record values for primes up to 10000:
n p(n) a(n)
1 2 1
5 11 3
9 23 4
20 71 12
39 167 25
132 743 58
236 1487 62
417 2879 71
675 5039 125
867 6719 168
The function A039653(n) = sigma(n)-1 iterated in A039654 satisfies A039653(n) >= n (with equality iff n is a prime), therefore the prime p cannot appear beyond index p in A039654, and it is sufficient to count how many times p = A039654(n) with n < p, cf. Formula. - M. F. Hasler, Sep 25 2017
FORMULA
a(n) = 1 + # { k < prime(n) | A039654(k) = prime(n) } . - M. F. Hasler, Sep 25 2017
PROG
(PARI) a(n)=sum(k=2, n=prime(n), A039654(k)==n) \\ M. F. Hasler, Sep 25 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved