[go: up one dir, main page]

login
A176470
Primes of the form 5*x^2 - 3*y^2, where x and y are consecutive numbers.
4
5, 17, 53, 137, 173, 257, 677, 1097, 1193, 1733, 2237, 2657, 2957, 4133, 5297, 5717, 8573, 8837, 9377, 11093, 11393, 12953, 14957, 17477, 18233, 18617, 19793, 23537, 24413, 29033, 30497, 33533, 36713, 40037, 41177, 45293, 48353
OFFSET
1,1
COMMENTS
a(n) is congruent to 1 (mod 4).
Primes of the form 2*k^2 + 10*k + 5 or 2*k^2 - 6*k - 3. - Vincenzo Librandi, Apr 19 2010
LINKS
MATHEMATICA
Select[Table[5n^2-3(n+1)^2, {n, 4, 200}], PrimeQ] (* Harvey P. Dale, Aug 07 2017 *)
PROG
(Magma) [ p: p in PrimesUpTo(60000) | exists(t){ n: n in [1..Isqrt(p)] | p eq 5*n^2-3*(n-1)^2 } ]; //y = x-1
CROSSREFS
Sequence in context: A191139 A107167 A201478 * A240693 A278464 A349974
KEYWORD
nonn
AUTHOR
Giovanni Teofilatto, Apr 18 2010
EXTENSIONS
Comment corrected by Giovanni Teofilatto, Apr 19 2010
STATUS
approved