[go: up one dir, main page]

login
A176415
Periodic sequence: repeat 7,1.
3
7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7
OFFSET
0,1
COMMENTS
Interleaving of A010727 and A000012.
Also continued fraction expansion of (7+sqrt(77))/2.
Also decimal expansion of 71/99.
Essentially first differences of A047521.
Binomial transform of A176414.
Inverse binomial transform of 2*A020707 preceded by 7.
Exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 4*x^2 + 4*x^3 + 10*x^4 + 10*x^5 + ... is the o.g.f. for A058187. - Peter Bala, Mar 13 2015
FORMULA
a(n) = 4+3*(-1)^n.
a(n) = a(n-2) for n > 1; a(0) = 7, a(1) = 1.
a(n) = -a(n-1)+8 for n > 0; a(0) = 7.
a(n) = 7*((n+1) mod 2)+(n mod 2).
a(n) = A010688(n+1).
G.f.: (7+x)/(1-x^2).
Dirichglet g.f.: (1+6*2^(-s))*zeta(s). - R. J. Mathar, Apr 06 2011
Multiplicative with a(2^e) = 7, and a(p^e) = 1 for p >= 3. - Amiram Eldar, Jan 01 2023
MATHEMATICA
PadRight[{}, 120, {7, 1}] (* Harvey P. Dale, Dec 30 2018 *)
PROG
(Magma) &cat[ [7, 1]: n in [0..52] ];
[ 4+3*(-1)^n: n in [0..104] ];
(PARI) a(n)=7-n%2*6 \\ Charles R Greathouse IV, Oct 28 2011
CROSSREFS
Cf. A010727 (all 7's sequence), A000012 (all 1's sequence), A092290 (decimal expansion of (7+sqrt(77))/2), A010688 (repeat 1, 7), A047521 (congruent to 0 or 7 mod 8), A176414 (expansion of (7+8*x)/(1+2*x)), A020707 (2^(n+2)), A058187.
Sequence in context: A171544 A344698 A010688 * A356948 A363150 A317846
KEYWORD
cofr,cons,easy,nonn,mult
AUTHOR
Klaus Brockhaus, Apr 17 2010
STATUS
approved