%I #16 Sep 08 2022 08:45:52
%S 0,430,3181140,23534073290,174105071018280,1288029291859162150,
%T 9528840527069010567420,70494360931227248318611010,
%U 521517272640378655992073684560
%N y-values in the solution to x^2-74*y^2=1.
%C The corresponding values of x of this Pell equation are in A176386.
%H Vincenzo Librandi, <a href="/A176387/b176387.txt">Table of n, a(n) for n = 1..200</a>
%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (7398,-1).
%F a(n) = 7398*a(n-1)-a(n-2) with a(1)=0, a(2)=430.
%F G.f.: 430*x^2/(1-7398*x+x^2).
%t LinearRecurrence[{7398,-1},{0,430},20]
%o (Magma) I:=[0,430]; [n le 2 select I[n] else 7398*Self(n-1)-Self(n-2): n in [1..10]];
%Y Cf. A176386.
%K nonn,easy
%O 1,2
%A _Vincenzo Librandi_, Apr 16 2010