OFFSET
1,1
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..75
M.R. Darafsheh, Hassan Jolany, Calculating (\int_0^\infty(sin^2n x)/x^2n dx), arXiv:1004.2653v1 [math.GM], 14 April 2010. Appears in International e-Journal of Engineering Mathematics: Theory and Application, 2009, vol. 7.
FORMULA
a(n) = A049331(2*n).
EXAMPLE
a(2) = 3 because Integral_{0..infinity} (sin(x)/x)^4 dx = (1/3)*Pi.
a(3) = 40 because Integral_{0..infinity} (sin(x)/x)^6 dx = (11/40)*Pi.
a(4) = 630 because Integral_{0..infinity} (sin(x)/x)^8 dx = (151/630)*Pi.
a(5) = 72576 because Integral_{0..infinity} (sin(x)/x)^10 dx = (15619/72576)*Pi.
MATHEMATICA
a[n_]:= (1/Pi)*Integrate[(Sin[x]/x)^(2n), {x, 0, Infinity}]//Denominator;
Array[a, 16] (* Jean-François Alcover, Nov 25 2017 *)
CROSSREFS
KEYWORD
frac,nonn
AUTHOR
Jonathan Vos Post, Apr 16 2010
EXTENSIONS
Edited and extended by Max Alekseyev, May 07 2010
STATUS
approved