[go: up one dir, main page]

login
A174554
Smallest k > 2 such that 2|k, 3|k+1, 4|k+2,..., n|k+n-2.
0
4, 8, 14, 62, 62, 422, 842, 2522, 2522, 27722, 27722, 360362, 360362, 360362, 720722, 12252242, 12252242, 232792562, 232792562, 232792562, 232792562, 5354228882, 5354228882, 26771144402, 26771144402, 80313433202, 80313433202
OFFSET
2,1
COMMENTS
We solve the system of n+1 equations : k==2 (mod 2), k==2 (mod 3),...,k==2 (mod n), and then the solutions are k== 2 mod (lcm(2,3,4,...,n)) where lcm(k) is the least common multiple of{1, 2, ..., k}(A003418) .
FORMULA
a(n) = 2 + lcm(2,3,4,...,n) = A003418(n) + 2.
EXAMPLE
a(2) = 4 because 2|4;
a(3) = 8 because 2|8 and 3|9;
a(4) = 14 because 2|14, 3|15 and 4|16;
a(5) = 62 because 2|62, 3|63, 4|64 and 5|65;
a(6) = 62 because 2|62, 3|63, 4|64, 5|65 and 6|66.
MAPLE
with(numtheory):q:=2:for k from 2 to 100 do :q1:= lcm(q, k):q2 :=2+q1 :print(q2): q :=q1 :od :
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Mar 22 2010
STATUS
approved