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1. Introduction

The in�nite product

�(a; x) =
1Y
n=0

1� ax4n+3
1� ax4n+1

converges for arbitrary complex a provided jxj < 1. In the �rst part of these
notes [1] we found the simple continued fraction expansion of �(a; x) when x
was a real algebraic number of the form

x =
N
p
m�

p
N2m� 4
2

and a was chosen equal to either
p
m or �

p
m: Here N and m are positive

integers such that N2m > 4. The approach made use of a continued fraction
expansion for �(a; x) due to Ramanujan.
In the second part of the notes we will �nd the simple continued fraction ex-
pansion of �(a; x) when a is equal to either i

p
m or �i

p
m and x is a purely

imaginary algebraic number of the form

x =

p
N2m+ 4�N

p
m

2
i;

N and m being positive integers:
In Section 2 we give two general transformations that convert a continued frac-
tion whose partial numerators are alternately +1 and �1 into a continued frac-
tion with all partial numerators equal to +1. These transformations will be
used in Section 3 to convert Ramanujan�s continued fraction representation of
�(a; x), for the particular values of a and x that we are considering, into the
form of a simple continued fraction.
Our results were motivated by conjectures made by Paul Hanna in sequences
A174504 through A174509, who considers the particular cases of the above cor-
responding to m = 1 and N = 1; 2; 4; 6; 8; or N = 10. Hanna works with the
continued fraction expansion of a real number of the form

exp

 1X
n=1

1

n ((�y)n + y�n)

!
with

y =

p
N2 + 4�N

2
;

but it is not di¢ cult to show that this real number is equal to �(�i; iy):
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2. Some continued fraction transformations

In order to prove Lemma 2 we will need the following preliminary result (a
variant of Proposition 1 from Part 1 of the notes).

Proposition 3. If a1; a2; : : : ; a2n is a sequence of complex numbers then

1 +
1

a1 � 1 +
1

a2 �
1

a3 +

1

a4 � � � � �
1

a2n�1 +

1

a2n
=

1

1 �
1

a1 +

1

a2 �
1

a3 + � � � �
1

a2n�1 +

1

a2n
:

(1)

Proof. By induction on n. The result is easily veri�ed for n = 1. Assume that
equation (1) is true for a �xed integer n > 1: By an abuse of notation we let
F (n) denote the lhs of (1). Then we have

F (n+ 1) = 1 +
1

a1 � 1 +
1

a2 �
1

a3 + � � � �
1

a2n�1 +

1

a2n �
1

a2n+1 +

1

a2n+2

= 1 +
1

a1 � 1 +
1

a2 �
1

a3 + � � � �
1

a2n�1 +

1�
a2n � 1

a2n+1+
1

a2n+2

�
=

1

1 �
1

a1 +

1

a2 � � � � �
1

a2n�1 +

1�
a2n � 1

a2n+1+
1

a2n+2

�
=

1

1 �
1

a1 +

1

a2 � � � � �
1

a2n�1 +

1

a2n �
1

a2n+1 +

1

a2n+2
;

where, in the penultimate step, we made use of the induction hypothesis. Thus
the induction goes through and the proposition is proved. �

In our next result we �nd two transformations that convert a continued fraction
whose partial numerators are alternately +1 and �1 into a continued fraction
with all partial numerators equal to +1.

Lemma 2. If a1; a2; a3; : : : is a sequence of complex numbers then

(a)

1

1 �
1

a1 +

1

a2 �
1

a3 + � � � �
1

a2n�1 +

1

a2n
= 1 +

1

a1 � 1 +
1

a2 � 1 +
1

1 + � � �

+

1

1 +

1

a2n�1 � 1 +
1

a2n � 1 +
1

1
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(b)

1

1 +

1

a1 �
1

a2 +

1

a3 � � � � �
1

a2n +

1

a2n+1
=

1

1 +

1

a1 � 1 +
1

1 +

1

a2 � 1 +
1

a3 � 1 +
1

1 +

� � � +
1

1 +

1

a2n � 1 +
1

a2n+1 � 1 +
1

1
.

Proof. (a) The proof is by induction on n. The result is easily veri�ed for
n = 1. Assume that (a) is true for a �xed integer n > 1: By another abuse of
notation we let G(n) denote the rhs of (a). Then

G(n+ 1) = 1 +
1

a1 � 1 +
1

a2 � 1 +
1

1 + � � � +
1

1 +

1

a2n+1 � 1 +
1

a2n+2 � 1 +
1

1

= 1 +
1

a1 � 1 +
1

a2 � 1 +
1

G(n)

= 1 +
1

a1 � 1 +
1

a2 � 1 + 1 �
1

a3 +

1

a4 � � � � �
1

a2n+1 +

1

a2n+2
(induction hypothesis)

1 +
1

a1 � 1 +
1

a2 �
1

a3 +

1

a4 + � � � �
1

a2n+1 +

1

a2n+2

=
1

1 �
1

a1 +

1

a2 �
1

a3 + � � � �
1

a2n+1 +

1

a2n+2
;

by Proposition 3, and the proof by induction is complete.

(b) The result is an immediate consequence of (a). We have

1

1 +

1

a1 �
1

a2 +

1

a3 � � � � �
1

a2n +

1

a2n+1
=

1

1 +

1

a1 � 1 + 1 �
1

a2 +

1

a3 � � � � �
1

a2n +

1

a2n+1

=
1

1 +

1

a1 � 1 +
1

1 +

1

a2 � 1 +
1

a3 � 1 +
1

1 +

� � � +
1

1 +

1

a2n � 1 +
1

a2n+1 � 1 +
1

1
:

�
3. Simple continued fraction expansions

The following continued fraction expansion is a particular case of a more general
result due to Ramanujan. For a proof consult [2, Entry 12 with b = 0 and a2

replaced with a].

�(a; x) =
1Y
n=0

1� ax4n+3
1� ax4n+1 =

1

1 �
ax

1 + x2 �
ax3

1 + x4 �
ax5

1 + x6 � � � � (2)
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valid for arbitrary complex a provided jxj < 1:

An equivalence transformation yields

1Y
n=0

1� ax4n+3
1� ax4n+1 =

1

1 �
1

1
a

�
1
x + x

�
�

1
1
x2 + x

2 �
1

1
a

�
1
x3 + x

3
�
�

1
1
x4 + x

4 � � � � (3)

valid for 0 < jxj < 1:

There are several ways in which we can choose values for a and x so that the
partial denominators of this continued fraction become integers. In Part 1 of
these notes we considered two possible choices. We now consider two further
cases.

Case 1.

Let N and m be positive integers and set a = i
p
m: Let x0 denote the algebraic

number

x0 =

(p
N2m+ 4�N

p
m

2

)
i

so that 0 < jx0j < 1 and
x0 +

1

x0
= �iN

p
m: (4)

A well-known property of Tn(x), the n-th Chebyshev polynomial of the �rst
kind, is the identity

Tn

�
x+ x�1

2

�
=
xn + x�n

2
x 6= 0:

Thus from equation (4)

xn0 +
1

xn0
= 2Tn

�
�N

p
m

2
i

�
n = 0; 1; 2; 3; :::

and the continued fraction expansion (3) becomes

1Y
n=0

1�
p
m
np

N2m+4�N
p
m

2

o4n+3
1 +

p
m
np

N2m+4�N
p
m

2

o4n+1 =
1

1 �
1

�ip
m
2T1

�
�N

p
m

2 i
�
�

1

2T2

�
�N

p
m

2 i
�
�

1

�ip
m
2T3

�
�N

p
m

2 i
�
�

1

2T4

�
�N

p
m

2 i
�
� � � � :

We now make an equivalence transformation so that the resulting partial nu-
merators, after the �rst one, are alternately +1 and �1.

4



1Y
n=0

1�
p
m
np

N2m+4�N
p
m

2

o4n+3
1 +

p
m
np

N2m+4�N
p
m

2

o4n+1 =
1

1 +

1

ip
m
2T1

�
�N

p
m

2 i
�
�

1

�2T2
�
�N

p
m

2 i
�

+

1

�ip
m
2T3

�
�N

p
m

2 i
�
�

1

2T4

�
�N

p
m

2 i
�

+

1

ip
m
2T5

�
�N

p
m

2 i
�
�

1

�2T6
�
�N

p
m

2 i
�

+

1

�ip
m
2T7

�
�N

p
m

2 i
�
�

1

2T8

�
�N

p
m

2 i
�
� � � � (5)

=
1

1 +

1

N �
1

mN2 + 2 +

1

mN3 + 3N �

1

m2N4 + 4mN2 + 2 +

1

m2N5 + 5mN3 + 5N � � � � :

Let us sketch the proof that the partial denominators (�1)n ip
m
2T2n+1

�
�N

p
m

2 i
�

and (�1)n2T2n
�
�N

p
m

2 i
�
that occur in the expansion are positive integers.

Firstly, one makes use of the recurrence equation Tn+1(x) = 2xTn(x)�Tn�1(x)
for the Chebyshev polynomials to inductively prove that the partial denomina-
tors are integers. That they are positive integers then follows easily from the
explicit formula

Tn(x) =

bn2 cX
k=0

�
n

2k

�
(x2 � 1)kxn�2k

=
n

2

bn2 cX
k=0

(�1)k (n� k � 1)!
k!(n� 2k)! (2x)

n�2k (n > 0).

We now apply Lemma 2 (b) to equation (5) to produce the expansion
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1Y
n=0

1�
p
m
np

N2m+4�N
p
m

2

o4n+3
1 +

p
m
np

N2m+4�N
p
m

2

o4n+1 =
1

1 +

1

ip
m
2T1

�
�N

p
m

2 i
�
� 1 +

1

1 +

1

�2T2
�
�N

p
m

2 i
�
� 1 +

1

�ip
m
2T3

�
�N

p
m

2 i
�
� 1 +

1

1 +

1

2T4

�
�N

p
m

2 i
�
� 1 +

1

ip
m
2T5

�
�N

p
m

2 i
�
� 1 +

1

1 +

1

�2T6
�
�N

p
m

2 i
�
� 1 +

1

�ip
m
2T7

�
�N

p
m

2 i
�
� 1 +

1

1 +

1

2T8

�
�N

p
m

2 i
�
� 1 + � � �

(6)

=
1

1 +

1

N � 1 +
1

1 +

1

mN2 + 1 +

1

mN3 + 3N � 1 +
1

1 +

1

m2N4 + 4mN2 + 1 +

1

m2N5 + 5mN3 + 5N � 1 +
1

1 + � � �

This is a simple continued fraction expansion for the in�nite product except
when N = 1.

In the case N = 1, equation (6) becomes the simple continued fraction ex-
pansion

1Y
n=0

1�
p
m
np

m+4�
p
m

2

o4n+3
1 +

p
m
np

m+4�
p
m

2

o4n+1 =
1

2 +

1

�2T2
�
�N

p
m

2 i
�
� 1 +

1

�ip
m
2T3

�
�N

p
m

2 i
�
� 1 +

1

1 +

1

2T4

�
�N

p
m

2 i
�
� 1 +

1

ip
m
2T5

�
�N

p
m

2 i
�
� 1 +

1

1 + � � �

=
1

2 +

1

m+ 1 +

1

m+ 2 +

1

1 +

1

m2 + 4m+ 1 +

1

m2 + 5m+ 4 +

1

1 + � � � : (7)

We mention two specializations of these results. If in equation (7) we replace m
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with 4m2 we get the simple continued fraction expansion

1Y
n=0

1� 2m
�p
m2 + 1�m

	4n+3
1 + 2m

�p
m2 + 1�m

	4n+1 =
1

2 +

1

4m2 + 1 +

1

4m2 + 2 +

1

1 +

1

16m4 + 16m2 + 1 +

1

16m4 + 20m2 + 4 +

1

1 + � � � ;

whilst setting N = 2 in equation (6) and replacing m with m2 yields the simple
continued fraction expansion

1Y
n=0

1�m
�p
m2 + 1�m

	4n+3
1 +m

�p
m2 + 1�m

	4n+1 =
1

1 +

1

1 +

1

1 +

1

4m2 + 1 +

1

8m2 + 5 +

1

1 +

1

16m4 + 16m2 + 1 +

1

32m4 + 40m2 + 9 +

1

1 + � � � :

Case 2.

Let N and m be positive integers but now we set a = �i
p
m: As before, we let

x0 denote the algebraic number

x0 =

(p
N2m+ 4�N

p
m

2

)
i

so that

xn0 +
1

xn0
= 2Tn

�
�N

p
m

2
i

�
n = 0; 1; 2; 3; :::.

The continued fraction expansion (3) becomes

1Y
n=0

1 +
p
m
np

N2m+4�N
p
m

2

o4n+3
1�

p
m
np

N2m+4�N
p
m

2

o4n+1 =
1

1 �
1

ip
m
2T1

�
�N

p
m

2 i
�
�

1

2T2

�
�N

p
m

2 i
�
�

1

ip
m
2T3

�
�N

p
m

2 i
�
�

1

2T4

�
�N

p
m

2 i
�
� � � � :

We use an equivalence transformation to arrange that the partial numerators
are alternately +1 and �1:
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1Y
n=0

1 +
p
m
np

N2m+4�N
p
m

2

o4n+3
1�

p
m
np

N2m+4�N
p
m

2

o4n+1 =
1

1 �
1

ip
m
2T1

�
�N

p
m

2 i
�
+

1

�2T2
�
�N

p
m

2 i
�

�
1

�ip
m
2T3

�
�N

p
m

2 i
�
+

1

2T4

�
�N

p
m

2 i
�

�
1

ip
m
2T5

�
�N

p
m

2 i
�
+

1

�2T6
�
�N

p
m

2 i
�

�
1

�ip
m
2T7

�
�N

p
m

2 i
�
+

1

2T8

�
�N

p
m

2 i
�
� � � �

=
1

1 �
1

N +

1

mN2 + 2 �
1

mN3 + 3N +

1

m2N4 + 4mN2 + 2 �
1

m2N5 + 5mN3 + 5N + � � � :

We now apply Lemma 2 (a) to give the expansion

1Y
n=0

1 +
p
m
np

N2m+4�N
p
m

2

o4n+3
1�

p
m
np

N2m+4�N
p
m

2

o4n+1 = 1 +
1

ip
m
2T1

�
�N

p
m

2 i
�
� 1 +

1

�2T2
�
�N

p
m

2 i
�
� 1

+

1

1 +

1

�ip
m
2T3

�
�N

p
m

2 i
�
� 1 +

1

2T4

�
�N

p
m

2 i
�
� 1

+

1

1 +

1

ip
m
2T5

�
�N

p
m

2 i
�
� 1 +

1

�2T6
�
�N

p
m

2 i
�
� 1

+

1

1 +

1

�ip
m
2T7

�
�N

p
m

2 i
�
� 1 +

1

2T8

�
�N

p
m

2 i
�
� 1 + � � �

= 1 +
1

N � 1 +
1

mN2 + 1 +

1

1 +

1

mN3 + 3N � 1 +

1

m2N4 + 4mN2 + 1 +

1

1 +

1

m2N5 + 5mN3 + 5N � 1 + � � � :

(8)

Except for the case N = 1; the partial denominators are all positive integers,
so that equation (8) is the simple continued fraction expansion of the in�nite
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product. Hanna has recorded the cases A174504 (m = 1; N = 2), A174506
(m = 1; N = 4), A174507 (m = 1; N = 6), A174508 (m = 1; N = 8) and
A174509 (m = 1; N = 10).

In the case N = 1, equation (8) becomes the simple continued fraction ex-
pansion

1Y
n=0

1 +
p
m
np

m+4�
p
m

2

o4n+3
1�

p
m
np

m+4�
p
m

2

o4n+1 = m+ 2 +
1

1 +

1

�ip
m
2T3

�
N
p
m

2 i
�
� 1 +

1

2T4

�
N
p
m

2 i
�
� 1 +

1

1 + � � �

= m+ 2 +
1

1 +

1

m+ 2 +

1

m2 + 4m+ 1 +

1

1 +

1

m2 + 5m+ 4 + � � � :

Hanna has recorded the case A174505 (m = 1).
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