Some simple continued fraction expansions for an infinite product, Part 2

Peter Bala, January 2013

1. Introduction

The infinite product

$$
\Phi(a, x) = \prod_{n=0}^{\infty} \frac{1 - ax^{4n+3}}{1 - ax^{4n+1}}
$$

converges for arbitrary complex a provided $|x| < 1$. In the first part of these notes [1] we found the simple continued fraction expansion of $\Phi(a, x)$ when x was a real algebraic number of the form

$$
x = \frac{N\sqrt{m} - \sqrt{N^2m - 4}}{2}
$$

and a was chosen equal to either \sqrt{m} or $-\sqrt{m}$. Here N and m are positive integers such that $N^2m > 4$. The approach made use of a continued fraction expansion for $\Phi(a, x)$ due to Ramanujan.

In the second part of the notes we will find the simple continued fraction expansion of $\Phi(a, x)$ when a is equal to either $i\sqrt{m}$ or $-i\sqrt{m}$ and x is a purely imaginary algebraic number of the form

$$
x = \frac{\sqrt{N^2m + 4} - N\sqrt{m}}{2}i,
$$

 N and m being positive integers.

In Section 2 we give two general transformations that convert a continued fraction whose partial numerators are alternately $+1$ and -1 into a continued fraction with all partial numerators equal to $+1$. These transformations will be used in Section 3 to convert Ramanujan's continued fraction representation of $\Phi(a, x)$, for the particular values of a and x that we are considering, into the form of a simple continued fraction.

Our results were motivated by conjectures made by Paul Hanna in sequences A174504 through A174509, who considers the particular cases of the above corresponding to $m = 1$ and $N = 1, 2, 4, 6, 8$, or $N = 10$. Hanna works with the continued fraction expansion of a real number of the form

$$
\exp\left(\sum_{n=1}^{\infty} \frac{1}{n\left((-y)^n + y^{-n}\right)}\right)
$$

with

$$
y = \frac{\sqrt{N^2 + 4} - N}{2},
$$

but it is not difficult to show that this real number is equal to $\Phi(-i, iy)$.

2. Some continued fraction transformations

In order to prove Lemma 2 we will need the following preliminary result (a variant of Proposition 1 from Part 1 of the notes).

Proposition 3. If a_1, a_2, \ldots, a_{2n} is a sequence of complex numbers then

$$
1 + \frac{1}{a_1 - 1} + \frac{1}{a_2} - \frac{1}{a_3} + \frac{1}{a_4} - \dots - \frac{1}{a_{2n-1}} + \frac{1}{a_{2n}} = \frac{1}{1} - \frac{1}{a_1} + \frac{1}{a_2} - \frac{1}{a_3} + \dots - \frac{1}{a_{2n-1}} + \frac{1}{a_{2n}}.
$$
\n(1)

Proof. By induction on n. The result is easily verified for $n = 1$. Assume that equation (1) is true for a fixed integer $n > 1$. By an abuse of notation we let $F(n)$ denote the lhs of (1). Then we have

$$
F(n+1) = 1 + \frac{1}{a_1 - 1} + \frac{1}{a_2 - a_3} + \dots - \frac{1}{a_{2n-1}} + \frac{1}{a_{2n}} - \frac{1}{a_{2n+1}} + \frac{1}{a_{2n+2}}
$$

\n
$$
= 1 + \frac{1}{a_1 - 1} + \frac{1}{a_2 - a_3} + \dots - \frac{1}{a_{2n-1}} + \frac{1}{a_{2n}} - \frac{1}{a_{2n+1 + \frac{1}{a_{2n+2}}}}
$$

\n
$$
= \frac{1}{1} - \frac{1}{a_1} + \frac{1}{a_2} - \dots - \frac{1}{a_{2n-1}} + \frac{1}{a_{2n}} - \frac{1}{a_{2n+1 + \frac{1}{a_{2n+2}}}}
$$

\n
$$
= \frac{1}{1} - \frac{1}{a_1} + \frac{1}{a_2} - \dots - \frac{1}{a_{2n-1}} + \frac{1}{a_{2n}} - \frac{1}{a_{2n+1}} + \frac{1}{a_{2n+2}},
$$

where, in the penultimate step, we made use of the induction hypothesis. Thus the induction goes through and the proposition is proved. \blacksquare

In our next result we find two transformations that convert a continued fraction whose partial numerators are alternately $+1$ and -1 into a continued fraction with all partial numerators equal to $+1$.

Lemma 2. If a_1, a_2, a_3, \ldots is a sequence of complex numbers then

$$
\rm (a)
$$

$$
\frac{1}{1} - \frac{1}{a_1} + \frac{1}{a_2} - \frac{1}{a_3} + \dots - \frac{1}{a_{2n-1}} + \frac{1}{a_{2n}} = 1 + \frac{1}{a_1 - 1} + \frac{1}{a_2 - 1} + \frac{1}{1} + \dots
$$

$$
+ \frac{1}{1} + \frac{1}{a_{2n-1} - 1} + \frac{1}{a_{2n} - 1} + \frac{1}{1}
$$

$$
\frac{1}{1} + \frac{1}{a_1} - \frac{1}{a_2} + \frac{1}{a_3} - \dots - \frac{1}{a_{2n}} + \frac{1}{a_{2n+1}} = \frac{1}{1} + \frac{1}{a_1 - 1} + \frac{1}{1} + \frac{1}{a_2 - 1} + \frac{1}{a_3 - 1} + \frac{1}{1} + \dots + \frac{1}{1} + \frac{1}{a_{2n} - 1} + \frac{1}{a_{2n+1} - 1} + \frac{1}{1}.
$$

Proof. (a) The proof is by induction on n . The result is easily verified for $n = 1$. Assume that (a) is true for a fixed integer $n > 1$. By another abuse of notation we let $G(n)$ denote the rhs of (a). Then

$$
G(n+1) = 1 + \frac{1}{a_1 - 1} + \frac{1}{a_2 - 1} + \frac{1}{1} + \dots + \frac{1}{1} + \frac{1}{a_{2n+1} - 1} + \frac{1}{a_{2n+2} - 1} + \frac{1}{1}
$$

\n
$$
= 1 + \frac{1}{a_1 - 1} + \frac{1}{a_2 - 1} + \frac{1}{G(n)}
$$

\n
$$
= 1 + \frac{1}{a_1 - 1} + \frac{1}{a_2 - 1 + 1} - \frac{1}{a_3} + \frac{1}{a_4} - \dots - \frac{1}{a_{2n+1}} + \frac{1}{a_{2n+2}}
$$
 (induction hypothesis)
\n
$$
1 + \frac{1}{a_1 - 1} + \frac{1}{a_2} - \frac{1}{a_3} + \frac{1}{a_4} + \dots - \frac{1}{a_{2n+1}} + \frac{1}{a_{2n+2}}
$$

\n
$$
= \frac{1}{1} - \frac{1}{a_1} + \frac{1}{a_2} - \frac{1}{a_3} + \dots - \frac{1}{a_{2n+1}} + \frac{1}{a_{2n+2}},
$$

by Proposition 3, and the proof by induction is complete.

(b) The result is an immediate consequence of (a). We have

$$
\frac{1}{1} + \frac{1}{a_1} - \frac{1}{a_2} + \frac{1}{a_3} - \dots - \frac{1}{a_{2n}} + \frac{1}{a_{2n+1}} = \frac{1}{1} + \frac{1}{a_1 - 1 + 1} - \frac{1}{a_2} + \frac{1}{a_3} - \dots - \frac{1}{a_{2n}} + \frac{1}{a_{2n+1}}
$$
\n
$$
= \frac{1}{1} + \frac{1}{a_1 - 1} + \frac{1}{1} + \frac{1}{a_2 - 1} + \frac{1}{a_3 - 1} + \frac{1}{1} + \dots + \frac{1}{1} + \frac{1}{a_{2n} - 1} + \frac{1}{a_{2n+1} - 1} + \frac{1}{1}.
$$

3. Simple continued fraction expansions

The following continued fraction expansion is a particular case of a more general result due to Ramanujan. For a proof consult [2, Entry 12 with $b=0$ and a^2 replaced with a].

$$
\Phi(a,x) = \prod_{n=0}^{\infty} \frac{1 - ax^{4n+3}}{1 - ax^{4n+1}} = \frac{1}{1} - \frac{ax}{1 + x^2} - \frac{ax^3}{1 + x^4} - \frac{ax^5}{1 + x^6} - \dots
$$
 (2)

(b)

valid for arbitrary complex a provided $|x| < 1$.

An equivalence transformation yields

$$
\prod_{n=0}^{\infty} \frac{1 - ax^{4n+3}}{1 - ax^{4n+1}} = \frac{1}{1 - \frac{1}{a} \left(\frac{1}{x} + x\right)} - \frac{1}{\frac{1}{x^2} + x^2} - \frac{1}{\frac{1}{a} \left(\frac{1}{x^3} + x^3\right)} - \frac{1}{\frac{1}{x^4} + x^4} - \dots \tag{3}
$$

valid for $0<|x|<1.$

There are several ways in which we can choose values for a and x so that the partial denominators of this continued fraction become integers. In Part 1 of these notes we considered two possible choices. We now consider two further cases.

Case 1.

Let N and m be positive integers and set $a = i\sqrt{m}$. Let x_0 denote the algebraic number

$$
x_0 = \left\{ \frac{\sqrt{N^2m + 4} - N\sqrt{m}}{2} \right\} i
$$

so that $0 < |x_0| < 1$ and

$$
x_0 + \frac{1}{x_0} = -iN\sqrt{m}.
$$
 (4)

A well-known property of $T_n(x)$, the *n*-th Chebyshev polynomial of the first kind, is the identity

$$
T_n\left(\frac{x+x^{-1}}{2}\right) = \frac{x^n + x^{-n}}{2} \quad x \neq 0.
$$

Thus from equation (4)

$$
x_0^n + \frac{1}{x_0^n} = 2T_n \left(-\frac{N\sqrt{m}}{2}i \right) \quad n = 0, 1, 2, 3, ...
$$

and the continued fraction expansion (3) becomes

$$
\prod_{n=0}^{\infty} \frac{1 - \sqrt{m} \left\{ \frac{\sqrt{N^2 m + 4} - N \sqrt{m}}{2} \right\}^{4n+3}}{1 + \sqrt{m} \left\{ \frac{\sqrt{N^2 m + 4} - N \sqrt{m}}{2} \right\}^{4n+1}} = \frac{1}{1 - \frac{1}{\sqrt{m}} 2T_1 \left(-\frac{N \sqrt{m}}{2} i \right)} - \frac{1}{2T_2 \left(-\frac{N \sqrt{m}}{2} i \right)} - \frac{1}{\frac{1}{\sqrt{m}} 2T_3 \left(-\frac{N \sqrt{m}}{2} i \right)} - \frac{1}{2T_4 \left(-\frac{N \sqrt{m}}{2} i \right)} - \dots
$$

We now make an equivalence transformation so that the resulting partial numerators, after the first one, are alternately $+1$ and -1 .

$$
\prod_{n=0}^{\infty} \frac{1 - \sqrt{m} \left\{ \frac{\sqrt{N^2 m + 4} - N\sqrt{m}}{2} \right\}^{4n+3}}{1 + \sqrt{m} \left\{ \frac{\sqrt{N^2 m + 4} - N\sqrt{m}}{2} \right\}^{4n+1}} = \frac{1}{1 + \frac{1}{\sqrt{m}} 2T_1 \left(-\frac{N\sqrt{m}}{2} i \right)} - \frac{1}{-2T_2 \left(-\frac{N\sqrt{m}}{2} i \right)}
$$

$$
+ \frac{1}{\frac{-i}{\sqrt{m}} 2T_3 \left(-\frac{N\sqrt{m}}{2} i \right)} - \frac{1}{2T_4 \left(-\frac{N\sqrt{m}}{2} i \right)}
$$

$$
+ \frac{1}{\frac{i}{\sqrt{m}} 2T_5 \left(-\frac{N\sqrt{m}}{2} i \right)} - \frac{1}{-2T_6 \left(-\frac{N\sqrt{m}}{2} i \right)}
$$

$$
+ \frac{1}{\frac{-i}{\sqrt{m}} 2T_7 \left(-\frac{N\sqrt{m}}{2} i \right)} - \frac{1}{2T_8 \left(-\frac{N\sqrt{m}}{2} i \right)} - \dots \tag{5}
$$

$$
= \frac{1}{1} + \frac{1}{N} - \frac{1}{mN^2 + 2} + \frac{1}{mN^3 + 3N} - \frac{1}{m^2N^4 + 4mN^2 + 2} + \frac{1}{m^2N^5 + 5mN^3 + 5N} - \dots
$$

Let us sketch the proof that the partial denominators $(-1)^n \frac{i}{\sqrt{m}} 2T_{2n+1} \left(-\frac{N\sqrt{m}}{2}\right)$ $\sqrt{\frac{m}{2}}i\right)$ and $(-1)^n 2T_{2n}$ $-\frac{N\sqrt{m}}{2}$ $\left(\frac{\sqrt{m}}{2}i\right)$ that occur in the expansion are positive integers. Firstly, one makes use of the recurrence equation $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$ for the Chebyshev polynomials to inductively prove that the partial denominators are integers. That they are positive integers then follows easily from the explicit formula

$$
T_n(x) = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} {n \choose 2k} (x^2 - 1)^k x^{n-2k}
$$

=
$$
\frac{n}{2} \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^k \frac{(n-k-1)!}{k!(n-2k)!} (2x)^{n-2k} \quad (n > 0).
$$

We now apply Lemma 2 (b) to equation (5) to produce the expansion

$$
\prod_{n=0}^{\infty} \frac{1 - \sqrt{n} \left\{ \frac{\sqrt{N^2 m + 4} - N\sqrt{m}}{2} \right\}^{4n+3}}{1 + \sqrt{m} \left\{ \frac{\sqrt{N^2 m + 4} - N\sqrt{m}}{2} \right\}^{4n+1}} = \frac{1}{1 + \frac{1}{\frac{i}{\sqrt{m}} 2T_1 \left(-\frac{N\sqrt{m}}{2} i \right) - 1} + \frac{1}{1 + \frac{2T_2 \left(-\frac{N\sqrt{m}}{2} i \right) - 1} + \frac{1}{\frac{2T_2 \left(-\frac{N\sqrt{m}}{2} i \right) - 1} + \frac{1}{\frac{2T_3 \left(-\frac{N\sqrt{m}}{2} i \right) - 1} + \frac{1}{\frac{2T_4 \left(-\frac{N\sqrt{m}}{2} i \right) - 1} + \frac{1}{\frac{2T_4 \left(-\frac{N\sqrt{m}}{2} i \right) - 1} + \frac{1}{\frac{2T_5 \left(-\frac{N\sqrt{m}}{2} i \right) - 1} + \frac{1}{\frac{2T_6 \left(-\frac{N\sqrt{m}}{2} i \right) - 1} + \frac{1}{\frac{2T_7 \left(-\frac{N\sqrt{m}}{2} i \right) - 1} + \frac{1}{\frac{2T_8 \left(-\frac{N\sqrt{m}}{2} i \right) - 1} + \dots (6)}}\right)}} = \frac{1}{1 + \frac{1}{N - 1 + 1} \frac{1}{1 + \frac{1}{N} N^2 + 1} + \frac{1}{m N^3 + 3N - 1} \frac{1}{1 + \frac{1}{m N^2 + 1} + \frac{1}{m^2 N^5 + 5m N^3 + 5N - 1} + \frac{1}{1} + \dots}
$$

This is a simple continued fraction expansion for the infinite product except when ${\cal N}=1.$

In the case $N = 1$, equation (6) becomes the simple continued fraction expansion

$$
\prod_{n=0}^{\infty} \frac{1 - \sqrt{m} \left\{ \frac{\sqrt{m+4} - \sqrt{m}}{2} \right\}^{4n+3}}{1 + \sqrt{m} \left\{ \frac{\sqrt{m+4} - \sqrt{m}}{2} \right\}^{4n+1}} = \frac{1}{2} + \frac{1}{-2T_2 \left(\frac{-N\sqrt{m}}{2} i \right) - 1} + \frac{1}{\frac{-i}{\sqrt{m}} 2T_3 \left(-\frac{N\sqrt{m}}{2} i \right) - 1} + \frac{1}{1} + \frac{1}{2T_4 \left(-\frac{N\sqrt{m}}{2} i \right) - 1} + \frac{1}{\frac{-i}{\sqrt{m}} 2T_5 \left(-\frac{N\sqrt{m}}{2} i \right) - 1} + \frac{1}{1} + \cdots
$$
\n
$$
= \frac{1}{2} + \frac{1}{m+1} + \frac{1}{m+2} + \frac{1}{1} + \frac{1}{m^2 + 4m + 1} + \frac{1}{m^2 + 5m + 4} + \frac{1}{1} + \cdots
$$
\n(7)

We mention two specializations of these results. If in equation (7) we replace m

with $4m^2$ we get the simple continued fraction expansion

$$
\prod_{n=0}^{\infty} \frac{1 - 2m \left\{ \sqrt{m^2 + 1} - m \right\}^{4n+3}}{1 + 2m \left\{ \sqrt{m^2 + 1} - m \right\}^{4n+1}} = \frac{1}{2 + \frac{1}{4m^2 + 1} + \frac{1}{4m^2 + 2} + \frac{1}{1}} + \frac{1}{16m^4 + 16m^2 + 1} + \frac{1}{16m^4 + 20m^2 + 4} + \frac{1}{1} + \dots
$$

whilst setting $N = 2$ in equation (6) and replacing m with m^2 yields the simple continued fraction expansion

$$
\prod_{n=0}^{\infty} \frac{1 - m \left\{ \sqrt{m^2 + 1} - m \right\}^{4n+3}}{1 + m \left\{ \sqrt{m^2 + 1} - m \right\}^{4n+1}} = \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{4m^2 + 1}{1 + \frac{8m^2 + 5}{1 + \frac{1}{1 + \frac{1}{1 + \frac{10m^2 + 1}{1 + \frac{10m^2 + 1}{1 + \frac{10m^2 + 1}{1 + \frac{10m^2 + 9}{1 + \frac{1}{1 + \dots}}}}}}}
$$

Case 2.

Let N and m be positive integers but now we set $a = -i\sqrt{m}$. As before, we let x_0 denote the algebraic number

$$
x_0 = \left\{ \frac{\sqrt{N^2m + 4} - N\sqrt{m}}{2} \right\} i
$$

so that

$$
x_0^n + \frac{1}{x_0^n} = 2T_n\left(-\frac{N\sqrt{m}}{2}i\right) \quad n = 0, 1, 2, 3,
$$

The continued fraction expansion (3) becomes

$$
\prod_{n=0}^{\infty} \frac{1 + \sqrt{m} \left\{ \frac{\sqrt{N^2 m + 4} - N\sqrt{m}}{2} \right\}^{4n+3}}{1 - \sqrt{m} \left\{ \frac{\sqrt{N^2 m + 4} - N\sqrt{m}}{2} \right\}^{4n+1}} = \frac{1}{1 - \frac{1}{\sqrt{m}} 2T_1 \left(-\frac{N\sqrt{m}}{2} i \right)} - \frac{1}{2T_2 \left(-\frac{N\sqrt{m}}{2} i \right)} - \frac{1}{\frac{1}{\sqrt{m}} 2T_3 \left(-\frac{N\sqrt{m}}{2} i \right)} - \frac{1}{2T_4 \left(-\frac{N\sqrt{m}}{2} i \right)} - \dots
$$

We use an equivalence transformation to arrange that the partial numerators are alternately $+1$ and -1 .

$$
\prod_{n=0}^{\infty} \frac{1 + \sqrt{m} \left\{ \frac{\sqrt{N^2 m + 4} - N \sqrt{m}}{2} \right\}^{4n+3}}{1 - \frac{i}{\sqrt{m}} 2T_1 \left(\frac{-N \sqrt{m}}{2} i \right)} + \frac{1}{-2T_2 \left(-\frac{N \sqrt{m}}{2} i \right)}
$$

$$
- \frac{1}{\frac{-i}{\sqrt{m}} 2T_3 \left(-\frac{N \sqrt{m}}{2} i \right)} + \frac{1}{2T_4 \left(-\frac{N \sqrt{m}}{2} i \right)}
$$

$$
- \frac{1}{\frac{-i}{\sqrt{m}} 2T_3 \left(-\frac{N \sqrt{m}}{2} i \right)} + \frac{1}{2T_4 \left(-\frac{N \sqrt{m}}{2} i \right)}
$$

$$
- \frac{1}{\frac{i}{\sqrt{m}} 2T_5 \left(-\frac{N \sqrt{m}}{2} i \right)} + \frac{1}{-2T_6 \left(-\frac{N \sqrt{m}}{2} i \right)}
$$

$$
- \frac{1}{\frac{-i}{\sqrt{m}} 2T_5 \left(-\frac{N \sqrt{m}}{2} i \right)} + \frac{1}{2T_8 \left(-\frac{N \sqrt{m}}{2} i \right)} - \cdots
$$

$$
= \frac{1}{1} - \frac{1}{N} + \frac{1}{mN^2 + 2} - \frac{1}{mN^3 + 3N + \frac{1}{mN^2 + 2} - \frac{1}{m^2 N^5 + 5mN^3 + 5N} + \cdots}
$$

We now apply Lemma 2 (a) to give the expansion

$$
\prod_{n=0}^{\infty} \frac{1 + \sqrt{m} \left\{ \frac{\sqrt{N^2 m + 4} - N\sqrt{m}}{2} \right\}^{4n+3}}{1 - \sqrt{m} \left\{ \frac{\sqrt{N^2 m + 4} - N\sqrt{m}}{2} \right\}^{4n+1}} = 1 + \frac{1}{\frac{i}{\sqrt{m}} 2T_1 \left(-\frac{N\sqrt{m}}{2} i \right) - 1} + \frac{1}{-2T_2 \left(-\frac{N\sqrt{m}}{2} i \right) - 1} + \frac{1}{1 + \frac{1}{\frac{-i}{\sqrt{m}} 2T_3 \left(-\frac{N\sqrt{m}}{2} i \right) - 1} + \frac{1}{2T_4 \left(-\frac{N\sqrt{m}}{2} i \right) - 1} + \frac{1}{1 + \frac{1}{\frac{-i}{\sqrt{m}} 2T_5 \left(-\frac{N\sqrt{m}}{2} i \right) - 1} + \frac{1}{-2T_6 \left(-\frac{N\sqrt{m}}{2} i \right) - 1} + \frac{1}{1 + \frac{-i}{\frac{-i}{\sqrt{m}} 2T_7 \left(-\frac{N\sqrt{m}}{2} i \right) - 1} + \frac{1}{2T_8 \left(-\frac{N\sqrt{m}}{2} i \right) - 1} + \cdots
$$
\n
$$
= 1 + \frac{1}{N - 1} + \frac{1}{mN^2 + 1} + \frac{1}{1} + \frac{1}{mN^3 + 3N - 1} + \frac{1}{m^2 N^4 + 4mN^2 + 1} + \frac{1}{1} + \frac{1}{m^2 N^5 + 5mN^3 + 5N - 1} + \cdots
$$

(8)

Except for the case $N = 1$, the partial denominators are all positive integers, so that equation (8) is the simple continued fraction expansion of the infinite product. Hanna has recorded the cases A174504 ($m = 1, N = 2$), A174506 $(m = 1, N = 4)$, A174507 $(m = 1, N = 6)$, A174508 $(m = 1, N = 8)$ and A174509 ($m = 1, N = 10$).

In the case $N = 1$, equation (8) becomes the simple continued fraction expansion

$$
\prod_{n=0}^{\infty} \frac{1 + \sqrt{m} \left\{ \frac{\sqrt{m+4} - \sqrt{m}}{2} \right\}^{4n+3}}{1 - \sqrt{m} \left\{ \frac{\sqrt{m+4} - \sqrt{m}}{2} \right\}^{4n+1}} = m+2+\frac{1}{1+\frac{-i}{\sqrt{m}} 2T_3 \left(\frac{N\sqrt{m}}{2} i \right) - 1} + \frac{1}{2T_4 \left(\frac{N\sqrt{m}}{2} i \right) - 1} + \frac{1}{1+\cdots}
$$

$$
= m+2+\frac{1}{1+m+2} + \frac{1}{m^2+4m+1} + \frac{1}{1+m^2+5m+4} + \cdots
$$

Hanna has recorded the case A174505 $(m = 1)$.

REFERENCES

- 1. P. BALA, Some simple continued fraction expansions for an infinite product, Part 1 (https://oeis.org/A174500/a174500_2.pdf)
- 2. B. C. BERNDT, Ramanujanís Notebooks, Part III, Springer-Verlag, New York, 1991.