Some simple continued fraction expansions for an infinite product,
Part 2

Peter Bala, January 2013

1. Introduction

The infinite product
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converges for arbitrary complex a provided |z| < 1. In the first part of these
notes [1] we found the simple continued fraction expansion of ®(a,x) when x
was a real algebraic number of the form
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and a was chosen equal to either /m or —y/m. Here N and m are positive
integers such that N2m > 4. The approach made use of a continued fraction
expansion for ®(a,z) due to Ramanujan.
In the second part of the notes we will find the simple continued fraction ex-
pansion of ®(a,x) when a is equal to either i\/m or —i\/m and z is a purely
imaginary algebraic number of the form
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N and m being positive integers.

In Section 2 we give two general transformations that convert a continued frac-
tion whose partial numerators are alternately +1 and —1 into a continued frac-
tion with all partial numerators equal to +1. These transformations will be
used in Section 3 to convert Ramanujan’s continued fraction representation of
®(a,x), for the particular values of a and = that we are considering, into the
form of a simple continued fraction.

Our results were motivated by conjectures made by Paul Hanna in sequences
A174504 through A174509, who considers the particular cases of the above cor-
responding to m = 1 and N = 1,2,4,6,8, or N = 10. Hanna works with the
continued fraction expansion of a real number of the form
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but it is not difficult to show that this real number is equal to ®(—i, iy).



2. Some continued fraction transformations

In order to prove Lemma 2 we will need the following preliminary result (a
variant of Proposition 1 from Part 1 of the notes).

Proposition 3. If ay,as9,...,a2, is a sequence of complex numbers then
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Proof. By induction on n. The result is easily verified for n = 1. Assume that
equation (1) is true for a fixed integer n > 1. By an abuse of notation we let
F(n) denote the lhs of (1). Then we have
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where, in the penultimate step, we made use of the induction hypothesis. Thus
the induction goes through and the proposition is proved. B

In our next result we find two transformations that convert a continued fraction
whose partial numerators are alternately +1 and —1 into a continued fraction
with all partial numerators equal to +1.

Lemma 2. If ay,a9,as,... 1s a sequence of complex numbers then
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Proof. (a) The proof is by induction on n. The result is easily verified for
n = 1. Assume that (a) is true for a fixed integer n > 1. By another abuse of
notation we let G(n) denote the rhs of (a). Then
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by Proposition 3, and the proof by induction is complete.

(b) The result is an immediate consequence of (a). We have
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3. Simple continued fraction expansions

The following continued fraction expansion is a particular case of a more general
result due to Ramanujan. For a proof consult [2, Entry 12 with b = 0 and a?
replaced with a).
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valid for arbitrary complex a provided |z| < 1.

An equivalence transformation yields
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valid for 0 < |z| < 1.

There are several ways in which we can choose values for a and x so that the
partial denominators of this continued fraction become integers. In Part 1 of
these notes we considered two possible choices. We now consider two further
cases.

Case 1.

Let N and m be positive integers and set a = iy/m. Let xg denote the algebraic

number
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so that 0 < |zg| < 1 and
1
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A well-known property of T,,(z), the n-th Chebyshev polynomial of the first
kind, is the identity
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Thus from equation (4)
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and the continued fraction expansion (3) becomes
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We now make an equivalence transformation so that the resulting partial nu-
merators, after the first one, are alternately +1 and —1.
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Let us sketch the proof that the partial denominators (—1)" ﬁQTQH_A'_l (— Nﬁz)

and (—1)"2Ty, (f N‘Q/ﬁz) that occur in the expansion are positive integers.

Firstly, one makes use of the recurrence equation T}, 1 (z) = 22T, () — Th—1(x)
for the Chebyshev polynomials to inductively prove that the partial denomina-
tors are integers. That they are positive integers then follows easily from the
explicit formula
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We now apply Lemma 2 (b) to equation (5) to produce the expansion
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This is a simple continued fraction expansion for the infinite product except
when N = 1.

In the case N = 1, equation (6) becomes the simple continued fraction ex-
pansion
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We mention two specializations of these results. If in equation (7) we replace m



with 4m? we get the simple continued fraction expansion
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whilst setting N = 2 in equation (6) and replacing m with m? yields the simple
continued fraction expansion
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Let N and m be positive integers but now we set a = —iy/m. As before, we let

2o denote the algebraic number

{\/N2m+4—N\/M}
2

i

Trog =

so that

1 N

) n=0,1,2,3, ...
0

The continued fraction expansion (3) becomes
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We use an equivalence transformation to arrange that the partial numerators
are alternately +1 and —1.
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We now apply Lemma 2 (a) to give the expansion
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Except for the case NV = 1, the partial denominators are all positive integers,
so that equation (8) is the simple continued fraction expansion of the infinite



product. Hanna has recorded the cases A174504 (m = 1,N = 2), A174506
(m = 1,N = 4), A174507 (m = 1,N = 6), A174508 (m = 1,N = 8) and
A174509 (m = 1, N = 10).

In the case N = 1, equation (8) becomes the simple continued fraction ex-
pansion
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Hanna has recorded the case A174505 (m = 1).
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